This website uses cookies to help us give you the best experience when you visit our website. By continuing to use this website, you consent to our use of these cookies.
Office Address: Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, ISRAEL
Sharabi, K., Hurwitz, A., Simon, A.J., Beitel, G.J., Morimoto, R.I., Rechavi, G., Sznajder, J.I., and Gruenbaum, Y. (2009a). Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106, 4024-4029.
Vadasz, I., Dada, L.A., Briva, A., Helenius, I.T., Sharabi, K., Welch, L.C., Kelly, A.M., Grzesik, B.A., Budinger, G.R., Liu, J., et al. (2012). Evolutionary conserved role of c-Jun-N-terminal kinase in CO2-induced epithelial dysfunction. PLoS One 7, e46696.
Barkan, R., Zahand, A.J., Sharabi, K., Lamm, A.T., Feinstein, N., Haithcock, E., Wilson, K.L., Liu, J., and Gruenbaum, Y. (2012). Ce-emerin and LEM-2: essential roles in Caenorhabditis elegans development, muscle function, and mitosis. Mol Biol Cell 23, 543-552.
Sharabi, K., Charar, C., Friedman, N., Mizrahi, I., Zaslaver, A., Sznajder, J.I., and Gruenbaum, Y. (2014). The response to high CO2 levels requires the neuropeptide secretion component HID-1 to promote pumping inhibition. PLoS Genet 10, e1004529.
Tavares, C.D.*, Sharabi, K.*, Dominy, J.E., Lee, Y., Isasa, M., Orozco, J.M., Jedrychowski, M.P., Kamenecka, T.M., Griffin, P.R., Gygi, S.P., et al. (2016). The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1alpha Transcriptional Coactivator. J Biol Chem 291, 10635-10645. *equal contribution
Sharabi, K., Lin, H., Tavares, C.D.J., Dominy, J.E., Camporez, J.P., Perry, R.J., Schilling, R., Rines, A.K., Lee, J., Hickey, M., et al. (2017). Selective Chemical Inhibition of PGC-1alpha Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell 169, 148-160 e115.
Hatting, M., Rines, A.K., Luo, C., Tabata, M., Sharabi, K., Hall, J.A., Verdeguer, F., Trautwein, C., and Puigserver, P. (2017). Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting. Cell Metab 25, 428-437.
Shigemura, M., Lecuona, E., Angulo, M., Dada, L.A., Edwards, M.B., Welch, L.C., Casalino-Matsuda, S.M., Sporn, P.H.S., Vadasz, I., Helenius, I.T., et al. (2019). Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Sci Rep 9, 18251.
Cruces-Sande, M., Arcones, A.C., Vila-Bedmar, R., Val-Blasco, A., Sharabi, K., Diaz-Rodriguez, D., Puigserver, P., Mayor, F., Jr., and Murga, C. (2020). Autophagy mediates hepatic GRK2 degradation to facilitate glucagon-induced metabolic adaptation to fasting. FASEB J 34, 399-409.
Reviews and commentaries
Sharabi, K., Lecuona, E., Helenius, I.T., Beitel, G.J., Sznajder, J.I., and Gruenbaum, Y. (2009b). Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes. J Cell Mol Med 13, 4304-4318.
Azzam, Z.S., Sharabi, K., Guetta, J., Bank, E.M., and Gruenbaum, Y. (2010). The physiological and molecular effects of elevated CO2 levels. Cell Cycle 9, 1528-1532.
Sharabi, K., Charar, C., and Gruenbaum, Y. (2015a). Pharyngeal pumping inhibition and avoidance by acute exposure to high CO2 levels are both regulated by the BAG neurons via different molecular pathways. Worm 4, e1008898.
Sharabi, K., Tavares, C.D., Rines, A.K., and Puigserver, P. (2015b). Molecular pathophysiology of hepatic glucose production. Mol Aspects Med46, 21-33.
Rines, A.K., Sharabi, K., Tavares, C.D., and Puigserver, P. (2016). Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 15, 786-804.
Hatting, M., Tavares, C.D.J., Sharabi, K., Rines, A.K., and Puigserver, P. (2018). Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 1411, 21-35.
Sharabi, K., Tavares, C.D.J., and Puigserver, P. (2019). Regulation of Hepatic Metabolism, Recent Advances, and Future Perspectives. Curr Diab Rep 19, 98.