Publications by year


Publications by Authors

Recent Publications


Contact Us

Head of Institute: Prof. Oren Tirosh

Administrative manager: Ms. Yael Fruchter

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
P.O.Box 12, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address:


Xue, Y. ; Braslavsky, I. ; Quake, S. R. Temperature Effect on Polymerase Fidelity. Journal of Biological ChemistryJournal of Biological Chemistry 2021. Publisher's VersionAbstract
The discovery of extremophiles helped enable the development of groundbreaking technology such as polymerase chain reaction. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is under-explored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not reaction temperature, thus suggesting that reaction temperature increases global error rate of polymerases independent of sequence context. Intriguingly, we also found that the DNA polymerase I of a psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19oC which is well below the freezing temperature of water. Our results provide a useful reference for how reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.The discovery of extremophiles helped enable the development of groundbreaking technology such as polymerase chain reaction. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is under-explored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not reaction temperature, thus suggesting that reaction temperature increases global error rate of polymerases independent of sequence context. Intriguingly, we also found that the DNA polymerase I of a psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19oC which is well below the freezing temperature of water. Our results provide a useful reference for how reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.
Dubovski, N. ; Ben Shoshan-Galeczki, Y. ; Malach, E. ; Niv, M. Y. Taste and chirality: l-glucose sweetness is mediated by TAS1R2/TAS2R3 receptor. 2021, 131393. Publisher's VersionAbstract
Naturally occurring sugars usually have d-chirality. While a change in chirality typically affects ligand–receptor interaction, non-caloric l-glucose was reported as sweet for humans. Here we show that l- and d-glucose have similar sensory detection thresholds (0.041 ± 0.006 M for d-glucose, and 0.032 ± 0.007 M for l-glucose) and similar sweetness intensities at suprathreshold concentrations. We demonstrate that l-glucose acts via the sweet taste receptor TAS1R2/TAS1R3, eliciting a dose-dependent activation in cell-based functional assays. Computational docking of glucose to the VFT domain of TAS1R2 suggests two sub-pockets, each compatible with each of the enantiomers. While some polar residues (Y103, D142, N143, S144, Y215) are unique for sub-pocket A and others (D307, T326, E382, R383) for sub-pocket B, no interaction is unique for only one enantiomer. The many options for creating hydrogen bonds with the hydroxyl moieties of glucose explain how both enantiomers can fit each one of the sub-pockets.
Bissoyi, A. ; Braslavsky, I. Adherent cell thawing by infrared radiation. 2021. Publisher's VersionAbstract
Cryopreservation of adherent cells is crucial for commercial cell therapy technology, including effective distribution and storage. Fast thawing has been shown to increase cell recovery in vitrified samples. Previously, radiofrequency (RF) has been investigated as a heating source on large samples, either with or without magnetic particles. Also, laser heating with the aid of dye or nanoparticles has been utilized on sub–millimeter samples successfully. For slow freezing cryopreservation methods, the influence of rate of thawing on viability is less clear. Cryopreservation of surface adhered cells result in many cases in detachment from the surface. We illustrate how intense infrared radiation from a focused halogen illuminator accelerates thawing. We show that two epithelial cell lines, retinal pigment epithelium cells and heterogeneous human epithelial colorectal adenocarcinoma cells, can be effectively cryopreserved and recovered using a combination of slow freezing and fast thawing under infrared illumination. We were able to successfully thaw samples, of 2–4 mm thick, including the media, on the order of a second, providing a heating rate of thousands of Kelvin per minute. Under optimal conditions, we observed higher post–thawing cell viability rates and higher cell adhesion with infrared thawing than with water bath thawing. We suggest that bulk warming with infrared radiation has an advantage over surface warming of surface–attached cells, as it alleviates cell stress during the process of thawing. These findings will pave the way for novel approaches to treating substrate–adhered cells and 3D scaffolds with cells and organoids. This technology may serve as a crucial component in lab–on–chip systems for medical testing and therapeutic use.
Zaretsky, J. ; Griess-Fishheimer, S. ; Carmi, A. ; Travinsky Shmul, T. ; Ofer, L. ; Sinai, T. ; Penn, S. ; Shahar, R. ; Monsonego-Ornan, E. Ultra-processed food targets bone quality via endochondral ossification. 2021, 9 14. Publisher's VersionAbstract
Ultra-processed foods have known negative implications for health; however, their effect on skeletal development has never been explored. Here, we show that young rats fed ultra-processed food rich in fat and sugar suffer from growth retardation due to lesions in their tibial growth plates. The bone mineral density decreases significantly, and the structural parameters of the bone deteriorate, presenting a sieve-like appearance in the cortices and poor trabecular parameters in long bones and vertebrae. This results in inferior mechanical performance of the entire bone with a high fracture risk. RNA sequence analysis of the growth plates demonstrated an imbalance in extracellular matrix formation and degradation and impairment of proliferation, differentiation and mineralization processes. Our findings highlight, for the first time, the severe impact of consuming ultra-processed foods on the growing skeleton. This pathology extends far beyond that explained by the known metabolic effects, highlighting bone as a new target for studies of modern diets.
Zandani, G. ; Kaftori-Sandler, N. ; Sela, N. ; Nyska, A. ; Madar, Z. Dietary broccoli improves markers associated with glucose and lipid metabolism through modulation of gut microbiota in mice. 2021, 111240. Publisher's VersionAbstract
ObjectiveBroccoli is a “functional food” that contains bioactive compounds and phytochemicals that have beneficial health-promoting effects. This study aimed at investigating the effects of broccoli consumption on lipid and glucose metabolism and gut microbiota. Methods Male C57BL/6J mice (7–8 wk old) were fed ad libitum with a normal diet supplemented with or without 10% (w/w) broccoli florets or broccoli stalks. Oral glucose tolerance tests were performed at week 15. After 17 wk, blood and tissues were collected. Serum parameters, histology, gene and protein expression, and intestinal microbiota composition were evaluated. Results Stalk supplementation led to reductions in fasting glucose levels, serum insulin, and the homeostasis model assessment–insulin resistance (HOMA-IR) index. Liver enzymes improved in both experimental groups, and broccoli florets decreased total triacylglycerols. The stalks group had elevated fatty acid oxidation–related genes and proteins (AMPK, PPARα, and CPT1). Diverse microbiota populations were observed in both broccoli groups. Broccoli stalks were found to be richer in Akkermansia muciniphila, while broccoli florets reduced Mucispirillum schaedleri abundance and increased bacterial richness. Conclusions Long-term whole broccoli supplementation decreased inflammation, improved lipid parameters and insulin sensitivity, and altered the gut microbiome in mice. Our data provide new information regarding the potential benefits of broccoli stalks in metabolic parameters.
Margulis, E. ; Dagan-Wiener, A. ; Ives, R. S. ; Jaffari, S. ; Siems, K. ; Niv, M. Y. Intense bitterness of molecules: Machine learning for expediting drug discovery. 2021, 19, 568 - 576. Publisher's VersionAbstract
Drug development is a long, expensive and multistage process geared to achieving safe drugs with high efficacy. A crucial prerequisite for completing the medication regimen for oral drugs, particularly for pediatric and geriatric populations, is achieving taste that does not hinder compliance. Currently, the aversive taste of drugs is tested in late stages of clinical trials. This can result in the need to reformulate, potentially resulting in the use of more animals for additional toxicity trials, increased financial costs and a delay in release to the market. Here we present BitterIntense, a machine learning tool that classifies molecules into “very bitter” or “not very bitter”, based on their chemical structure. The model, trained on chemically diverse compounds, has above 80% accuracy on several test sets. Our results suggest that about 25% of drugs are predicted to be very bitter, with even higher prevalence (~40%) in COVID19 drug candidates and in microbial natural products. Only ~10% of toxic molecules are predicted to be intensely bitter, and it is also suggested that intense bitterness does not correlate with hepatotoxicity of drugs. However, very bitter compounds may be more cardiotoxic than not very bitter compounds, possessing significantly lower QPlogHERG values. BitterIntense allows quick and easy prediction of strong bitterness of compounds of interest for food, pharma and biotechnology industries. We estimate that implementation of BitterIntense or similar tools early in drug discovery process may lead to reduction in delays, in animal use and in overall financial burden.
Klein, H. ; Karni, N. ; Israel, S. ; Gross, M. ; Muszkat, M. ; Niv, M. Y. Reversible Taste Loss in a COVID-19 Patient With Preexisting Chronic Smell Impairment. Journal of Investigative Medicine High Impact Case ReportsJournal of Investigative Medicine High Impact Case Reports 2021, 9 2324709621990765. Publisher's VersionAbstract
Smell loss is important for coronavirus disease-2019 (COVID-19) screening and diagnosis. Particular attention should be paid to individuals with pre-COVID-19 chronic hyposmia or anosmia. We report a case of reversible taste impairment in a COVID-19 patient with chronically impaired sense of smell. This case emphasizes the importance of COVID-19-related taste assessment.
Klein, H. ; Asseo, K. ; Karni, N. ; Benjamini, Y. ; Nir-Paz, R. ; Muszkat, M. ; Israel, S. ; Niv, M. Y. Onset, duration and unresolved symptoms, including smell and taste changes, in mild COVID-19 infection: a cohort study in Israeli patients. 2021, 27, 769 - 774. Publisher's VersionAbstract
ObjectivesTo characterize longitudinal symptoms of mild coronavirus disease 2019 (COVID-19) patients for a period of 6 months, to potentially aid in disease management. Methods Phone interviews were conducted with 103 patients with mild COVID-19 in Israel over a 6-month period (April 2020 to October 2020). Patients were recruited via social media and word to mouth and were interviewed up to 4 times, depending on reports of their unresolved symptoms. Inclusion criteria required participants to be residents of Israel aged 18 years or older, with positive COVID-19 real-time PCR results and nonsevere symptoms. The onset, duration, severity and resolution of symptoms were analysed. Results A total of 44% (45/103), 41% (42/103), 39% (40/103) and 38% (39/103) of patients experienced headache, fever, muscle ache and dry cough as the first symptom respectively. Smell and taste changes were experienced at 3.9 ± 5.4 and 4.6 ± 5.7 days (mean ± standard deviation (SD)) after disease onset respectively. Among prevalent symptoms, fever had the shortest duration (5.8 ± 8.6 days), and taste and smell changes were the longest-lasting symptoms (17.2 ± 17.6 and 18.9 ± 19.7 days; durations censored at 60 days). Longer recovery of the sense of smell correlated with the extent of smell change. At the 6-month follow-up, 46% (47/103) of the patients had at least one unresolved symptom, most commonly fatigue (22%, 23/103), smell and taste changes (15%, 15/103 and 8%, 8/103 respectively) and breathing difficulties (8%, 8/103). Conclusions Long-lasting effects of mild COVID-19 manifested in almost half of the participants reporting at least one unresolved symptom after 6 months.
Itoigawa, A. ; Fierro, F. ; Chaney, M. E. ; Lauterbur, M. E. ; Hayakawa, T. ; Tosi, A. J. ; Niv, M. Y. ; Imai, H. Lowered sensitivity of bitter taste receptors to β-glucosides in bamboo lemurs: an instance of parallel and adaptive functional decline in TAS2R16?. Proceedings of the Royal Society B: Biological SciencesProceedings of the Royal Society B: Biological Sciences 2021, 288, 20210346. Publisher's Version
Israeli, H. ; Degtjarik, O. ; Fierro, F. ; Chunilal, V. ; Gill, A. K. ; Roth, N. J. ; Botta, J. ; Prabahar, V. ; Peleg, Y. ; Chan, L. F. ; et al. Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science 2021, eabf7958. Publisher's VersionAbstract
Obesity is a global epidemic causing morbidity and impaired quality of life. The melanocortin receptor 4 (MC4R) is at the crux of appetite, energy homeostasis, and body-weight control in the central nervous system and is a prime target for anti-obesity drugs. Here, we present the cryo-EM structure of the human MC4R-Gs signaling complex bound to the agonist setmelanotide, a cyclic peptide recently approved for the treatment of obesity. The work reveals the mechanism of MC4R activation, highlighting a molecular switch that initiates satiation signaling. In addition, our findings indicate that Ca2+ is required for agonist but not antagonist efficacy. These results fill a gap in understanding MC4R activation and could guide the design of future weight management drugs.
Ben Abu, N. ; Mason, P. E. ; Klein, H. ; Dubovski, N. ; Ben Shoshan-Galeczki, Y. ; Malach, E. ; Pražienková, V. ; Maletínská, L. ; Tempra, C. ; Chamorro, V. C. ; et al. Sweet taste of heavy water. 2021, 4 440. Publisher's VersionAbstract
Hydrogen to deuterium isotopic substitution has only a minor effect on physical and chemical properties of water and, as such, is not supposed to influence its neutral taste. Here we conclusively demonstrate that humans are, nevertheless, able to distinguish D2O from H2O by taste. Indeed, highly purified heavy water has a distinctly sweeter taste than same-purity normal water and can add to perceived sweetness of sweeteners. In contrast, mice do not prefer D2O over H2O, indicating that they are not likely to perceive heavy water as sweet. HEK 293T cells transfected with the TAS1R2/TAS1R3 heterodimer and chimeric G-proteins are activated by D2O but not by H2O. Lactisole, which is a known sweetness inhibitor acting via the TAS1R3 monomer of the TAS1R2/TAS1R3, suppresses the sweetness of D2O in human sensory tests, as well as the calcium release elicited by D2O in sweet taste receptor-expressing cells. The present multifaceted experimental study, complemented by homology modelling and molecular dynamics simulations, resolves a long-standing controversy about the taste of heavy water, shows that its sweet taste is mediated by the human TAS1R2/TAS1R3 taste receptor, and opens way to future studies of the detailed mechanism of action.
Chasnitsky, M. ; Yashunsky, V. ; Braslavsky, I. Heat flux balance description of unidirectional freezing and melting dynamics on a translational temperature gradient stage. 2021, 161, 106734. Publisher's VersionAbstract
Directional solidification occurs in industrial and natural processes, such as freeze-casting, metal processing, biological cryopreservation and freezing of soils. Translational temperature gradient stage allows to control the process of directional solidification and to visualize it with optical microscope. In this stage freezing velocity and temperature gradient are decoupled and are independently controlled. Here we study the dynamics of the phase transition interface in thin water samples using translational temperature gradient stage. We follow position of the ice–water interface with optical microscopy and compare it to solution of one dimensional Stefan problem in the low velocity limit. We find an agreement between experimental observations and theoretical predictions for constant velocity and during acceleration of the ice front. This work presents a practical framework for analysis and design of experiments on a translational temperature gradient stage.
Shumeiko, V. ; Paltiel, Y. ; Bisker, G. ; Hayouka, Z. ; Shoseyov, O. A nanoscale paper-based near-infrared optical nose (NIRON). Biosensors and Bioelectronics 2021, 172, 112763. Publisher's VersionAbstract
Electronic noses (e-nose) and optical noses (o-nose) are two emerging approaches for the development of artificial olfactory systems for flavor and smell evaluation. The current work leverages the unique optical properties of semiconducting single-wall carbon nanotubes (SWCNTs) to develop a prototype of a novel paper-based near-infrared optical nose (NIRON). We have drop-dried an array of SWCNTs encapsulated with a wide variety of peptides on a paper substrate and continuously imaged the emitted SWCNTs fluorescence using a CMOS camera. Odors and different volatile molecules were passed above the array in a flow chamber, resulting in unique modulation patterns of the SWCNT photoluminescence (PL). Quartz crystal microbalance (QCM) measurements performed in parallel confirmed the direct binding between the vapor molecules and the peptide-SWCNTs. PL levels measured before and during exposure demonstrate distinct responses to the four tested alcoholic vapors (ethanol, methanol, propanol, and isopropanol). In addition, machine learning tools directly applied to the fluorescence images allow us to distinguish between the aromas of red wine, beer, and vodka. Further, we show that the developed sensor can detect limonene, undecanal, and geraniol vapors, and differentiate between their smells utilizing the PL response pattern. This novel paper-based optical biosensor provides data in real-time, and is recoverable and suitable for working at room temperature and in a wide range of humidity levels. This platform opens new avenues for real-time sensing of volatile chemical compounds, odors, and flavors.
Rozner, R. ; Vernikov, J. ; Griess-Fishheimer, S. ; Travinsky, T. ; Penn, S. ; Schwartz, B. ; Mesilati-Stahy, R. ; Argov-Argaman, N. ; Shahar, R. ; Monsonego-Ornan, E. The Role of Omega-3 Polyunsaturated Fatty Acids from Different Sources in Bone Development. Nutrients 2020, 12. Publisher's VersionAbstract
N-3 polyunsaturated fatty acids (PUFAs) are essential nutrients that must be obtained from the diet. We have previously showed that endogenous n-3 PUFAs contribute to skeletal development and bone quality in fat-1 mice. Unlike other mammals, these transgenic mice, carry the n-3 desaturase gene and thus can convert n-6 to n-3 PUFAs endogenously. Since this model does not mimic dietary exposure to n-3 PUFAs, diets rich in fish and flaxseed oils were used to further elucidate the role of n-3 PUFAs in bone development. Our investigation reveals that dietary n-3 PUFAs decrease fat accumulation in the liver, lower serum fat levels, and alter fatty acid (FA) content in liver and serum. Bone analyses show that n-3 PUFAs improve mechanical properties, which were measured using a three-point bending test, but exert complex effects on bone structure that vary according to its source. In a micro-CT analysis, we found that the flaxseed oil diet improves trabecular bone micro-architecture, whereas the fish oil diet promotes higher bone mineral density (BMD) with no effect on trabecular bone. The transcriptome characterization of bone by RNA-seq identified regulatory mechanisms of n-3 PUFAs via modulation of the cell cycle and peripheral circadian rhythm genes. These results extend our knowledge and provide insights into the molecular mechanisms of bone remodeling regulation induced by different sources of dietary n-3 PUFAs.
Ofir, O. ; Buch, A. ; Rouach, V. ; Goldsmith, R. ; Stern, N. ; Monsonego-Ornan, E. Association between abdominal obesity and fragility fractures among elderly Israeli women. 2020, 32, 1459 - 1467. Publisher's VersionAbstract
Obesity has been traditionally viewed as a protective factor for fractures. Recent studies have challenged this concept, particularly regarding abdominal obesity. We aimed to investigate the association between abdominal obesity, body mass index (BMI) and fragility fractures prevalence in a sample of community-dwelling elderly Israeli women.
Antunes, B. P. ; Vainieri, M. L. ; Alini, M. ; Monsonego-Ornan, E. ; Grad, S. ; Yayon, A. Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18. 2020, 105, 170 - 179. Publisher's VersionAbstract
Current treatments for cartilage lesions are often associated with fibrocartilage formation and donor site morbidity. Mechanical and biochemical stimuli play an important role in hyaline cartilage formation. Biocompatible scaffolds capable of transducing mechanical loads and delivering bioactive instructive factors may better support cartilage regeneration. In this study we aimed to test the interplay between mechanical and FGF-18 mediated biochemical signals on the proliferation and differentiation of primary bovine articular chondrocytes embedded in a chondro-conductive Fibrin-Hyaluronan (FB/HA) based hydrogel. Chondrocytes seeded in a Fibrin-HA hydrogel, with or without a chondro-inductive, FGFR3 selective FGF18 variant (FGF-18v) were loaded into a joint-mimicking bioreactor applying controlled, multi-axial movements, simulating the natural movements of articular joints. Samples were evaluated for DNA content, sulphated glycosaminoglycan (sGAG) accumulation, key chondrogenic gene expression markers and histology. Under moderate loading, samples produced particularly significant amounts of sGAG/DNA compared to unloaded controls. Interestingly there was no significant effect of FGF-18v on cartilage gene expression at rest. Following moderate multi-axial loading, FGF-18v upregulated the expression of Aggrecan (ACAN), Cartilage Oligomeric Matrix Protein (COMP), type II collagen (COL2) and Lubricin (PRG4). Moreover, the combination of load and FGF-18v, significantly downregulated Matrix Metalloproteinase-9 (MMP-9) and Matrix Metaloproteinase-13 (MMP-13), two of the most important factors contributing to joint destruction in OA. Biomimetic mechanical signals and FGF-18 may work in concert to support hyaline cartilage regeneration and repair.Statement of significance Articular cartilage has very limited repair potential and focal cartilage lesions constitute a challenge for current standard clinical procedures. The aim of the present research was to explore novel procedures and constructs, based on biomaterials and biomechanical algorithms that can better mimic joints mechanical and biochemical stimulation to promote regeneration of damaged cartilage. Using a hydrogel-based platform for chondrocyte 3D culture revealed a synergy between mechanical forces and growth factors. Exploring the mechanisms underlying this mechano-biochemical interplay may enhance our understanding of cartilage remodeling and the development of new strategies for cartilage repair and regeneration.
Kalev-Altman, R. ; Hanael, E. ; Zelinger, E. ; Blum, M. ; Monsonego-Ornan, E. ; Sela-Donenfeld, D. Conserved role of matrix metalloproteases 2 and 9 in promoting the migration of neural crest cells in avian and mammalian embryos. The FASEB JournalThe FASEB JournalThe FASEB Journal 2020, 34, 5240 - 5261. Publisher's VersionAbstract
Abstract Neural crest cells (NCCs) are a unique embryonic cell population that initially reside at the dorsal neural tube but later migrate in the embryo and differentiate into multiple types of derivatives. To acquire motility, NCCs undergo epithelial-to-mesenchymal transition and invade the surrounding extracellular matrix (ECM). Matrix metalloproteases (MMPs) are a large family of proteases which regulate migration of various embryonic and adult cells via ECM remodeling. The gelatinase's subgroup of MMPs is the most studied one due to its key role in metastasis. As it is composed of only two proteases, MMP2 and MMP9, it is important to understand whether each is indispensable or redundant in its biological function. Here we explored the role of the gelatinases in executing NCC migration, by determining whether MMP2 and/or MMP9 regulate migration across species in singular, combined, or redundant manners. Chick and mouse embryos were utilized to compare expression and activity of both MMPs using genetic and pharmacological approaches in multiple in vivo and ex vivo assays. Both MMPs were found to be expressed and active in mouse and chick NCCs. Inhibition of each MMP was sufficient to prevent NCC migration in both species. Yet, NCC migration was maintained in MMP2?/? or MMP9?/? mouse mutants due to compensation between the gelatinases, but reciprocal pharmacological inhibition in each mutant prevented NCC migration. This study reveals for the first time that both gelatinases are expressed in avian and mammalian NCCs, and demonstrates their fundamental and conserved role in promoting embryonic cell migration.
Gerkin, R. C. ; Ohla, K. ; Veldhuizen, M. G. ; Joseph, P. V. ; Kelly, C. E. ; Bakke, A. J. ; Steele, K. E. ; Farruggia, M. C. ; Pellegrino, R. ; Pepino, M. Y. ; et al. Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem Senses 2020. Publisher's VersionAbstract
In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4<OR<10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
Karni, N. ; Klein, H. ; Asseo, K. ; Benjamini, Y. ; Israel, S. ; Nimri, M. ; Olstein, K. ; Nir-Paz, R. ; Hershko, A. ; Muszkat, M. ; et al. Self-rated smell ability enables highly specific predictors of COVID-19 status: a case control study in Israel. Open Forum Infect Dis 2020. Publisher's VersionAbstract
Clinical diagnosis of COVID-19 is essential for detection and prevention of COVID-19. Sudden onset of taste and smell loss is a hallmark of COVID-19, and optimal ways for including these symptoms in the screening of patients and distinguishing COVID-19 from other acute viral diseases, should be established.We performed a case-control study on patients that were PCR-tested for COVID-19 (112 positive and 112 negative participants), recruited during the first wave (March 2020 – May 2020) of COVID-19 pandemic in Israel. Patients reported over by phone their symptoms and medical history and rated their olfactory and gustatory abilities before and during their illness on a 1-10 scale.Changes in smell and taste occurred in 68% (95% CI 60%-76%) and 72% (64%-80%), of positive patients, with 24 (11-53 range) and 12 (6-23) respective odds ratios. The ability to smell was decreased by 0.5±1.5 in negatives, and by 4.5±3.6 in positives. A penalized logistic regression classifier based on 5 symptoms has 66% sensitivity, 97% specificity and an area under the ROC curve of 0.83 (AUC) on a hold-out set. A classifier based on degree of smell change only is almost as good, with 66% sensitivity, 97% specificity and 0.81 AUC. The predictive positive value (PPV) of this classifier is 0.68 and negative predictive value (NPV) is 0.97.Self-reported quantitative olfactory changes, either alone or combined with other symptoms, provide a specific tool for clinical diagnosis of COVID-19. A simple calculator for prioritizing COVID-19 laboratory testing is presented here.
Asseo, K. ; Fierro, F. ; Slavutsky, Y. ; Frasnelli, J. ; Niv, M. Y. Tracking COVID-19 using taste and smell loss Google searches is not a reliable strategy. 2020, 10, 20527. Publisher's VersionAbstract
Web search tools are widely used by the general public to obtain health-related information, and analysis of search data is often suggested for public health monitoring. We analyzed popularity of searches related to smell loss and taste loss, recently listed as symptoms of COVID-19. Searches on sight loss and hearing loss, which are not considered as COVID-19 symptoms, were used as control. Google Trends results per region in Italy or state in the US were compared to COVID-19 incidence in the corresponding geographical areas. The COVID-19 incidence did not correlate with searches for non-symptoms, but in some weeks had high correlation with taste and smell loss searches, which also correlated with each other. Correlation of the sensory symptoms with new COVID-19 cases for each country as a whole was high at some time points, but decreased (Italy) or dramatically fluctuated over time (US). Smell loss searches correlated with the incidence of media reports in the US. Our results show that popularity of symptom searches is not reliable for pandemic monitoring. Awareness of this limitation is important during the COVID-19 pandemic, which continues to spread and to exhibit new clinical manifestations, and for potential future health threats.