Dor, C. ; Stark, A. H. ; Dichtiar, R. ; Keinan-Boker, L. ; Shimony, T. ; Sinai, T. . Milk And Dairy Consumption Is Positively Associated With Height In Adolescents: Results From The Israeli National Youth Health And Nutrition Survey. EUROPEAN JOURNAL OF NUTRITION 2021.AbstractPurpose Milk consumption is associated with increased height primarily in early childhood. However, in adolescents, data are scarce with inconsistent results. Since height is a proxy for overall health and well-being, this study evaluated the association of dairy intake with height in adolescents. Methods Students in 7th-12th grades, participating in the 2015-2016 Israeli Health and Nutrition Youth Survey, a school-based cross-sectional study, completed self-administered questionnaires, including a semi-quantitative food frequency questionnaire (n = 3529, 48% males, 15.2 +/- 1.6 years). Anthropometric measurements were also performed. Dairy servings were calculated as the calcium equivalent of 1 cup of milk, and consumption was divided into four categories from very low (< 1 serving/day) to high (3 + servings/day). BMI- and Height-for-age z scores (HAZs) were calculated according to WHO growth standard; relatively short stature (RSS) was defined as HAZ < - 0.7 SD (< 25th percentile). Multivariable linear and logistic regression analyses were performed to evaluate the association of dairy intake with HAZ and prevalence of RSS, respectively. Results Median consumption of dairy products was 2 servings/day, 1.4 from unsweetened products (milk, cheese and yogurt). Controlling for age, sex, BMI-z-score and socioeconomic status, each increment of unsweetened dairy intake was associated with on average 0.04 higher HAZ (equivalent to 0.3-0.4 cm, p < 0.05), and with reduced risk for RSS: OR 0.90, 95%CI: 0.84, 0.97, p < 0.01. No such associations were found with sweetened dairy products. Conclusion Consumption of unsweetened dairy products (3-4 servings/day) appears to contribute to achieving growth potential in adolescents. Intervention studies are necessary to determine the causal relationship between dairy intake and linear growth.
Sirotinskaya, V. ; Bar Dolev, M. ; Yashunsky, V. ; Bahari, L. ; Braslavsky, I. . Extended Temperature Range Of The Ice-Binding Protein Activity. LangmuirLangmuir 2024. Publisher's VersionAbstractIce-binding proteins (IBPs) are expressed in various organisms for several functions, such as protecting them from freezing and freeze injuries. Via adsorption on ice surfaces, IBPs depress ice growth and recrystallization and affect nucleation and ice shaping. IBPs have shown promise in mitigating ice growth under moderate supercooling conditions, but their functionality under cryogenic conditions has been less explored. In this study, we investigate the impact of two types of antifreeze proteins (AFPs): type III AFP from fish and a hyperactive AFP from an insect, the Tenebrio molitor AFP, in vitrified dimethylsulfoxide (DMSO) solutions. We report that these AFPs depress devitrification at −80 °C. Furthermore, in cases where devitrification does occur, AFPs depress ice recrystallization during the warming stage. The data directly demonstrate that AFPs are active at temperatures below the regime of homogeneous nucleation. This research paves the way for exploring AFPs as potential enhancers of cryopreservation techniques, minimizing ice-growth-related damage, and promoting advancements in this vital field.
Munteanu, C. ; Schwartz, B. . B Vitamins, Glucoronolactone And The Immune System: Bioavailability, Doses And Efficiency. Nutrients, 2024, 16.AbstractThe present review deals with two main ingredients of energy/power drinks: B vitamins and glucuronolactone and their possible effect on the immune system. There is a strong relationship between the recommended daily dose of selected B vitamins and a functional immune system. Regarding specific B vitamins: (1) Riboflavin is necessary for the optimization of reactive oxygen species (ROS) in the fight against bacterial infections caused by Staphylococcus aureus and Listeria monocytogenes. (2) Niacin administered within normal doses to obese rats can change the phenotype of skeletal fibers, and thereby affect muscle metabolism. This metabolic phenotype induced by niacin treatment is also confirmed by stimulation of the expression of genes involved in the metabolism of free fatty acids (FFAs) and oxidative phosphorylation at this level. (3) Vitamin B5 effects depend primarily on the dose, thus large doses can cause diarrhea or functional disorders of the digestive tract whereas normal levels are effective in wound healing, liver detoxification, and joint health support. (4) High vitamin B6 concentrations (>2000 mg per day) have been shown to exert a significant negative impact on the dorsal root ganglia. Whereas, at doses of approximately 70 ng/mL, sensory symptoms were reported in 80% of cases. (5) Chronic increases in vitamin B12 have been associated with the increased incidence of solid cancers. Additionally, glucuronolactone, whose effects are not well known, represents a controversial compound. (6) Supplementing with D-glucarates, such as glucuronolactone, may help the body’s natural defense system function better to inhibit different tumor promoters and carcinogens and their consequences. Cumulatively, the present review aims to evaluate the relationship between the selected B vitamins group, glucuronolactone, and the immune system and their associations to bioavailability, doses, and efficiency.
Schwartz, B. ; Munteanu, C. . Interactions Between Dietary Antioxidants, Dietary Fiber And The Gut Microbiome: Their Putative Role In Inflammation And Cancer. International Journal of Molecular Sciences 2024, 25, 8250. Publisher's VersionAbstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Eitan, A. ; Gover, O. ; Sulimani, L. ; Meiri, D. ; Shterzer, N. ; Mills, E. ; Schwartz, B. . The Effect Of Oil-Based Cannabis Extracts On Metabolic Parameters And Microbiota Composition Of Mice Fed A Standard And A High-Fat Diet. International Journal of Molecular Sciences 2024, 25, 1422-0067. Publisher's VersionAbstractThe prevalence of obesity and obesity-related pathologies is lower in frequent cannabis users compared to non-users. It is well established that the endocannabinoid system has an important role in the development of obesity. We recently demonstrated that prolonged oral consumption of purified Δ-9 Tetrahydrocannabinol (THC), but not of cannabidiol (CBD), ameliorates diet-induced obesity and improves obesity-related metabolic complications in a high-fat diet mouse model. However, the effect of commercially available medical cannabis oils that contain numerous additional active molecules has not been examined. We tested herein the effects of THC- and CBD-enriched medical cannabis oils on obesity parameters and the gut microbiota composition of C57BL/6 male mice fed with either a high-fat or standard diet. We also assessed the levels of prominent endocannabinoids and endocannabinoid-like lipid mediators in the liver. THC-enriched extract prevented weight gain by a high-fat diet and attenuated diet-induced liver steatosis concomitantly with reduced levels of the lipid mediators palmitoyl ethanolamide (PEA) and docosahexaenoyl ethanolamide (DHEA) in the liver. In contrast, CBD-enriched extract had no effect on weight gain, but, on the contrary, it even exacerbated liver steatosis. An analysis of the gut microbiota revealed that mainly time but not treatment exerted a strong effect on gut microbiota alterations. From our data, we conclude that THC-enriched cannabis oil where THC is the main constituent exerts the optimal anti-obesity effects.
Frishman, S. ; Nuriel-Ohayon, M. ; Turjeman, S. ; Pinto, Y. ; Yariv, O. ; Tenenbaum-Gavish, K. ; Peled, Y. ; Poran, E. ; Pardo, J. ; Chen, R. ; et al. Positive Effects Of Diet-Induced Microbiome Modification On Gdm In Mice Following Human Faecal Transfer. Gut 2024. Publisher's Version
Hansen, T. ; Lee, J. ; Reicher, N. ; Ovadia, G. ; Guo, S. ; Guo, W. ; Liu, J. ; Braslavsky, I. ; Rudich, Y. ; Davies, P. L. . Ice Nucleation Proteins Self-Assemble Into Large Fibres To Trigger Freezing At Near 0 °C. eLife 2023, 12, RP91976. Publisher's VersionAbstractIn nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins (INPs) of common environmental bacteria like Pseudomonas syringae and Pseudomonas borealis. However, individually, these 100 kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an INP gene into Escherichia coli led to efficient ice nucleation. Here, we demonstrate that a positively charged subdomain at the C-terminal end of the central β-solenoid of the INP is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the INP multimers form fibres that are ~5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Mutsenko, V. ; Anastassopoulos, E. ; Zaragotas, D. ; Simaioforidou, A. ; Tarusin, D. ; Lauterboeck, L. ; Sydykov, B. ; Brunotte, R. ; Brunotte, K. ; Rozanski, C. ; et al. Monitoring Of Freezing Patterns Within 3D Collagen-Hydroxyapatite Scaffolds Using Infrared Thermography. 2023, 111, 57 - 69. Publisher's VersionAbstractThe importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (collagen-HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to −25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf homogenate (CLH) from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions (‘in air’ or ‘in bulk CPA’). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 (‘scaffold in a bulk CPA’) vs. 7.71 ± 0.43 (‘bulk CPA’, P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 (‘scaffold in a bulk CPA’) vs. 7.68 ± 0.34 (‘bulk CPA’, P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen ‘in air’ were documented for CLH from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min) compared to Snomax, 5 μg/ml (2.14 ± 0.33 °C and 19.91 ± 4.72 min), respectively). Moreover, when frozen ‘in air’ in CLH from Hippophae rhamnoides, collagen-HAP scaffolds were shown to have the longest ice-liquid equilibrium phase during crystallization and the lowest degree of supercooling followed by alginate core-shell capsules and nanofibrous electrospun fiber mats made of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) (PCL/PLA) blend. The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation with enhanced batch homogeneity and optimization of CPA compositions of natural origin active at warm sub-zero temperatures.
Avizemel, O. ; Frishman, S. ; Pinto, Y. ; Michael, Y. ; Turjeman, S. ; Tenenbaum-Gavish, K. ; Yariv, O. ; Peled, Y. ; Poran, E. ; Pardo, J. ; et al. Residential Greenness, Gestational Diabetes Mellitus (Gdm) And Microbiome Diversity During Pregnancy. 2023, 251, 114191. Publisher's VersionAbstractBackgroundGestational diabetes mellitus (GDM) is associated with reduced gut microbiota richness that was also reported to differ significantly between those living in rural compared to urban environments. Therefore, our aim was to examine the associations between greenness and maternal blood glucose levels and GDM, with microbiome diversity as a possible mediator in these associations. Methods Pregnant women were recruited between January 2016 and October 2017. Residential greenness was evaluated as mean Normalized Difference Vegetation Index (NDVI) within 100, 300 and 500 m buffers surrounding each maternal residential address. Maternal glucose levels were measured at 24–28 weeks of gestation and GDM was diagnosed. We estimated the associations between greenness and glucose levels and GDM using generalized linear models, adjusting for socioeconomic status and season at last menstrual period. Using causal mediation analysis, the mediation effects of four different indices of microbiome alpha diversity in first trimester stool and saliva samples were assessed. Results Of 269 pregnant women, 27 participants (10.04%) were diagnosed with GDM. Although not statistically significant, adjusted exposure to medium tertile levels of mean NDVI at 300 m buffer had lower odds of GDM (OR = 0.45, 95% CI: 0.16, 1.26, p = 0.13) and decreased change in mean glucose levels (β = −6.28, 95% CI: 14.91, 2.24, p = 0.15) compared to the lowest tertile levels of mean NDVI. Mixed results were observed at 100 and 500 m buffers, and when comparing highest tertile levels to lowest. No mediation effect of first trimester microbiome on the association between residential greenness and GDM was observed, and a small, possibly incidental, mediation effect on glucose levels was observed. Conclusion Our study suggests possible associations between residential greenness and glucose intolerance and risk of GDM, though without sufficient evidence. Microbiome in the first trimester, while involved in GDM etiology, is not a mediator in these associations. Future studies in larger populations should further examine these associations.
Margulis, E. ; Lang, T. ; Tromelin, A. ; Ziaikin, E. ; Behrens, M. ; Niv, M. Y. . Bitter Odorants And Odorous Bitters: Toxicity And Human Tas2R Targets. Journal of Agricultural and Food ChemistryJournal of Agricultural and Food Chemistry 2023. Publisher's VersionAbstractFlavor is perceived through the olfactory, taste, and trigeminal systems, mediated by designated GPCRs and channels. Signal integration occurs mainly in the brain, but some cross-reactivities occur at the receptor level. Here, we predict potential bitterness and taste receptors targets for thousands of odorants. BitterPredict and BitterIntense classifiers suggest that 3–9% of flavor and food odorants have bitter taste, but almost none are intensely bitter. About 14% of bitter molecules are expected to have an odor. Bitterness is more common for unpleasant smells such as fishy, amine, and ammoniacal, while non-bitter odorants often have pleasant smells. Experimental toxicity values suggest that fishy ammoniac smells are more toxic than pleasant smells, regardless of bitterness. TAS2R14 is predicted as the main bitter receptor for odorants, confirmed by in vitro profiling of 10 odorants. The activity of bitter odorants may have implications for physiology due to ectopic expression of taste and smell receptors.Flavor is perceived through the olfactory, taste, and trigeminal systems, mediated by designated GPCRs and channels. Signal integration occurs mainly in the brain, but some cross-reactivities occur at the receptor level. Here, we predict potential bitterness and taste receptors targets for thousands of odorants. BitterPredict and BitterIntense classifiers suggest that 3–9% of flavor and food odorants have bitter taste, but almost none are intensely bitter. About 14% of bitter molecules are expected to have an odor. Bitterness is more common for unpleasant smells such as fishy, amine, and ammoniacal, while non-bitter odorants often have pleasant smells. Experimental toxicity values suggest that fishy ammoniac smells are more toxic than pleasant smells, regardless of bitterness. TAS2R14 is predicted as the main bitter receptor for odorants, confirmed by in vitro profiling of 10 odorants. The activity of bitter odorants may have implications for physiology due to ectopic expression of taste and smell receptors.