Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

A recombinant fungal compound induces anti-proliferative and pro-apoptotic effects on colon cancer cells

Citation:

Nimri, L. ; Spivak, O. ; Tal, D. ; Schälling, D. ; Peri, I. ; Graeve, L. ; Salame, T. M. ; Yarden, O. ; Hadar, Y. ; Schwartz, B. . A Recombinant Fungal Compound Induces Anti-Proliferative And Pro-Apoptotic Effects On Colon Cancer Cells. Oncotarget 2017, 8, 28854-28864.

Date Published:

2017 Apr 25

Abstract:

Finding intracellular pathways and molecules that can prevent the proliferation of colon cancer cells can provide significant bases for developing treatments for this disease. Ostreolysin (Oly) is a protein found in the mushroom Pleurotus ostreatus, and we have produced a recombinant version of this protein (rOly).We measured the viability of several colon cancer cells treated with rOly. Xenografts and syngeneic colon cancer cells were injected into in vivo mouse models, which were then treated with this recombinant protein.rOly treatment induced a significant reduction in viability of human and mouse colon cancer cells. In contrast, there was no reduction in the viability of normal epithelial cells from the small intestine. In the search for cellular targets of rOly, we showed that it enhances the anti-proliferative activity of drugs targeting cellular tubulin. This was accompanied by a reduction in the weight and volume of tumours in mice injected with rOly as compared to their respective control mice in two in vivo models.Our results advance the functional understanding of rOly as a potential anti-cancer treatment associated with pro-apoptotic activities preferentially targeting colon cancer cells.