Miron, N. ; Tirosh, O. .
Cholesterol Prevents Hypoxia-Induced Hypoglycemia By Regulation Of A Metabolic Ketogenic Shift.
Oxidative Medicine and Cellular Longevity 2019,
2019.
Publisher's VersionAbstractBlood cholesterol levels have been connected to high-altitude adaptation. In the present study, we treated mice with high-cholesterol diets following exposure to acute hypoxic stress and evaluated the effects of the diets on whole-body, liver glucose, and liver fat metabolism. For rapid cholesterol liver uptake, 6-week-old male C57BL/J6 mice were fed with high-cholesterol/cholic acid (CH) diet for 6 weeks and then were exposed to gradual oxygen level reduction for 1 h and hypoxia at 7% oxygen for additional 1 hour using a hypoxic chamber. Animals were than sacrificed, and metabolic markers were evaluated. Hypoxic treatment had a strong hypoglycemic effect that was completely blunted by CH treatment. Decreases in gluconeogenesis and glycogenolysis as well as an increase in ketone body formation were observed. Such changes indicate a metabolic shift from glucose to fat utilization due to activation of the inducible nitric oxide synthase/AMPK axis in the CH-treated animals. Increased ketogenesis was also observed in vitro in hepatocytes after cholesterol treatment. In conclusion, our results show for the first time that cholesterol contributes to metabolic shift and adaptation to hypoxia in vivo and in vitro through induction of HIF-1α and iNOS expression. © 2019 Naama Miron and Oren Tirosh.
Anavi, S. ; Tirosh, O. .
Inos As A Metabolic Enzyme Under Stress Conditions.
Free Radical Biology and Medicine 2019.
Publisher's VersionAbstractNitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from L-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells. © 2019
Kanner, J. ; Shpaizer, A. ; Nelgas, L. ; Tirosh, O. .
S-Nitroso- N-Acetylcysteine (Nac-Sno) As An Antioxidant In Cured Meat And Stomach Medium.
Journal of Agricultural and Food Chemistry 2019,
67, 10930-10936.
Publisher's VersionAbstractThe stability of lipids in meat products depends on the initial concentration of hydroperoxides, the catalytic involvement of metal ions and myoglobin, endogenous antioxidants, and biological and technological factors. Ground meat was treated with additives, sealed in vacuum bags, heated to 75 °C, and stored opened to air at 4 °C. S-Nitroso-N-acetylcysteine (NAC-SNO) at concentration like nitrite used by the industry prevents lipid peroxidation in the product, even after storage for 1 month at 4 °C. The same simulated treatments at different concentrations of both compounds show that NAC-SNO acts as an antioxidant ∼4-fold better than nitrite at pH 6.2 or 3.0. Ascorbic acid significantly improves nitrite antioxidant effect. NAC-SNO was found to prevent, much better than nitrite, accumulation of reactive aldehydes and hydroxynonenal protein modification. In condition like those used by the industry for meat products processing, NAC-SNO acts better than nitrite to provide antioxidant protection without the side effect of N-nitrosation, oxidation, and the loss of nutrient generated by nitrite. © 2019 American Chemical Society.
Abu Ahmad, N. ; Raizman, M. ; Weizmann, N. ; Wasek, B. ; Arning, E. ; Bottiglieri, T. ; Tirosh, O. ; Troen, A. M. .
Betaine Attenuates Pathology By Stimulating Lipid Oxidation In Liver And Regulating Phospholipid Metabolism In Brain Of Methionine-Choline&Ndash;Deficient Rats.
The FASEB Journal 2019, fj.201802683R.
Publisher's VersionAbstractMethyl-donor deficiency is a risk factor for neurodegenerative diseases. Dietary deficiency of the methyl-donors methionine and choline [methionine-choline?deficient (MCD) diet] is a well-established model of nonalcoholic steatohepatitis (NASH), yet brain metabolism has not been studied in this model. We hypothesized that supplemental betaine would protect both the liver and brain in this model and that any benefit to the brain would be due to improved liver metabolism because betaine is a methyl-donor in liver methylation but is not metabolically active in the brain. We fed male Sprague-Dawley rats a control diet, MCD diet, or betaine-supplemented MCD (MCD+B) diet for 8 wk and collected blood and tissue. As expected, betaine prevented MCD diet?induced NASH. However, contrary to our prediction, it did not appear to do so by stimulating methylation; the MCD+B diet worsened hyperhomocysteinemia and depressed liver methylation potential 8-fold compared with the MCD diet. Instead, it significantly increased the expression of genes involved in ?-oxidation: fibroblast growth factor 21 and peroxisome proliferator?activated receptor α. In contrast to that of the liver, brain methylation potential was unaffected by diet. Nevertheless, several phospholipid (PL) subclasses involved in stabilizing brain membranes were decreased by the MCD diet, and these improved modestly with betaine. The protective effect of betaine is likely due to the stimulation of ?-oxidation in liver and the effects on PL metabolism in brain.?Abu Ahmad, N., Raizman, M., Weizmann, N., Wasek, B., Arning, E., Bottiglieri, T., Tirosh, O., Troen, A. M. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline?deficient rats.Methyl-donor deficiency is a risk factor for neurodegenerative diseases. Dietary deficiency of the methyl-donors methionine and choline [methionine-choline?deficient (MCD) diet] is a well-established model of nonalcoholic steatohepatitis (NASH), yet brain metabolism has not been studied in this model. We hypothesized that supplemental betaine would protect both the liver and brain in this model and that any benefit to the brain would be due to improved liver metabolism because betaine is a methyl-donor in liver methylation but is not metabolically active in the brain. We fed male Sprague-Dawley rats a control diet, MCD diet, or betaine-supplemented MCD (MCD+B) diet for 8 wk and collected blood and tissue. As expected, betaine prevented MCD diet?induced NASH. However, contrary to our prediction, it did not appear to do so by stimulating methylation; the MCD+B diet worsened hyperhomocysteinemia and depressed liver methylation potential 8-fold compared with the MCD diet. Instead, it significantly increased the expression of genes involved in ?-oxidation: fibroblast growth factor 21 and peroxisome proliferator?activated receptor α. In contrast to that of the liver, brain methylation potential was unaffected by diet. Nevertheless, several phospholipid (PL) subclasses involved in stabilizing brain membranes were decreased by the MCD diet, and these improved modestly with betaine. The protective effect of betaine is likely due to the stimulation of ?-oxidation in liver and the effects on PL metabolism in brain.?Abu Ahmad, N., Raizman, M., Weizmann, N., Wasek, B., Arning, E., Bottiglieri, T., Tirosh, O., Troen, A. M. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline?deficient rats.