Publications by year

<embed>

Publications by Authors

Recent Publications

More<embed>

Contact Us

Head of Institute: Prof. Oren Froy

Administrative manager: Ms. Yael Fruchter

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
P.O.Box 12, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: yaelf@savion.huji.ac.il

Publications

2019
Oren, T. ; Nimri, L. ; Yehuda-Shnaidman, E. ; Staikin, K. ; Hadar, Y. ; Friedler, A. ; Amartely, H. ; Slutzki, M. ; Di Pizio, A. ; Niv, M. Y. ; et al. Recombinant Ostreolysin Induces Brown Fat-Like Phenotype in HIB-1B Cells. Mol Nutr Food Res 2019, 63, e1970012.
Nimri, L. ; Peri, I. ; Yehuda-Shnaidman, E. ; Schwartz, B. Adipocytes Isolated from Visceral and Subcutaneous Depots of Donors Differing in BMI Crosstalk with Colon Cancer Cells and Modulate their Invasive Phenotype. Translational Oncology 2019, 12, 1404-1415. Publisher's VersionAbstract
PURPOSE: Mechanisms related the crosstalk between adipocytes and colon cancer cells are still not clear. We hypothesize that molecules and adipocytokines generated from the adipose tissue of obese individuals accentuate the effect on the metabolic reprogramming in colon cancer cells, i.e. induce disarray in energy metabolism networks of the targeted affected colonic epithelial cells, prompting their malignant phenotype. METHODS: To explore the mechanistic behind this crosstalk we conducted a co-culture model system using human colon cancer cells having different malignant abilities and adipocytes from different depots and subjects. RESULTS: The results demonstrate that co-culturing aggressive colon cancer cells such as HM-7 cells, with Visceral or Subcutaneous adipocytes (VA or SA respectively) from lean/obese subjects significantly up-regulate the secretion of the adipokines IL-8, MCP1, and IL-6 from the adipocytes. Surprisingly, the response of co-culturing HM-7 cells with obese SA was substantially more significant. In addition, these effects were significantly more pronounced when using HM-7 cells as compared to the less malignant HCT116 colon cancer cells. Moreover, the results showed that HM-7 cells, co-cultured with VA or SA from obese subjects, expressed higher levels of fatty acid binding protein 4; thus, the conditioned media obtained from the wells contained HM-7 cells and adipocytes from obese subjects was significantly more efficient in promoting invasion of HM-7 cells. CONCLUSIONS: We conclude that interaction between adipocytes and colon cancer cells, especially the highly malignant cells, results in metabolic alterations in colon cancer cells and in highly hypertrophy phenotype which characterized by increasing adipokines secretion from the adipocytes. © 2019 The Authors
Vetvicka, V. ; Gover, O. ; Karpovsky, M. ; Hayby, H. ; Danay, O. ; Ezov, N. ; Hadar, Y. ; Schwartz, B. Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. Journal of Functional Foods 2019, 54, 81-91. Publisher's VersionAbstract
We compared the immune-modulating activity of glucans extracted from P. ostreatus and P. eryngii on phagocytosis of peripheral blood neutrophils, and superoxide release from HL-60 cells. The results suggest that the anti-inflammatory properties of these glucans are partially mediated through modulation of neutrophil effector functions (P. eryngii was more effective). Additionally, both glucans dose-dependently competed for the anti-Dectin-1 and anti-CR3 antibody binding. We then tested the putative anti-inflammatory effects of the extracted glucans in inflammatory bowel disease (IBD) using the dextran sulfate sodium (DSS)–induced model in mice. The clinical symptoms of IBD were efficiently relieved by the treatment with two different doses of the glucan from both fungi. Glucan fractions, from either P. ostreatus or P. eryngii, markedly prevented TNF-α mediated inflammation in the DSS–induced inflamed intestine. These results suggest that there are variations in glucan preparations from different fungi in their anti-inflammatory ability. © 2018 Elsevier Ltd
Vetvicka, V. ; Gover, G. ; Hayby, H. ; Danay, O. ; Ezov, N. ; Hadar, Y. ; Schwartz, B. Immunomodulating effects exerted by glucans extracted from the king oyster culinary-medicinal mushroom pleurotus eryngii (agaricomycetes) grown in substrates containing various concentrations of olive mill waste. International Journal of Medicinal Mushrooms 2019, 21, 765-781. Publisher's VersionAbstract
We have recently demonstrated that we could enhance glucan content in Pleurotus eryngii following cultivation of the mushrooms on a substrate containing different concentrations of olive mill solid waste (OMSW). These changes are directly related to the content of OMSW in the growing substrate. Using dextran sulfate sodium (DSS)-inflammatory bowel disease (IBD) mice model, we measured the colonic inflammatory response to the different glucan preparations. We found that the histology damaging score (HDS) resulting from DSS treatment reach a value of 11.8 ± 2.3 were efficiently downregulated by treatment with the fungal extracted glucans. Glucans extracted from stalks cultivated at 20% OMSW downregulated to a HDS value of 6.4 ± 0.5 whereas those cultivated at 80% OMSW showed the strongest effects (5.5 ± 0.6). Similar downregulatory effects were obtained for expression of various intestinal cytokines. All tested glucans were equally effective in regulating the number of CD14/CD16 monocytes from 18.2 ± 2.7% for DSS to 6.4 ± 2.0 for DSS + glucans extracted from stalks cultivated at 50% OMSW. We tested the effect of glucans on lipopolysaccharide- induced production of TNF-α, which demonstrated that stalk-derived glucans were more effective than caps-derived glucans. Isolated glucans competed with anti-Dectin-1 and anti-CR3 antibodies, indicating that they contain β-glucans recognized by these receptors. In conclusion, the most effective glucans in ameliorating IBD-associated symptoms induced by DSS treatment in mice were glucan extracts prepared from the stalk of P. eryngii grown at higher concentrations of OMSW. We conclude that these stress-induced growing conditions may be helpful in selecting more effective glucans derived from edible mushrooms. © 2019 by Begell House, Inc.
Israeli, E. ; Adler Berken, N. ; Gover, O. ; Waechtershaeuser, E. ; Graeve, L. ; Schwartz, B. Recombinant ostreolysin (rOly) inhibits the anti-adipogenic Hedgehog (Hh) signaling pathway in 3T3-L1 cells. Journal of Functional Foods 2019, 59, 185-193. Publisher's VersionAbstract
Obesity is a nutrition-associated disorder result of an imbalance between energy intake and energy expenditure. Changing adipocytes differentiation patterns is considered as a strategy to treat obesity-related disorders. Recently, much interest is focused on the role of posttranslational modifications of tubulin on adipocyte differentiation. We recently demonstrated that a recombinant version of the fungal protein Ostreolysin (rOly) drastically affects metabolism of adipose tissue. The aim of the present study is to extend our understanding of the in vitro effects of rOly on different adipocytes. We demonstrate that rOly inhibits the anti-adipogenic Hedgehog (Hh) signaling pathway in 3T3-L1 cells. Additionally, rOly affected the gene expression levels of SQSTM1 and Collagen type 1, which are mediated by AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells. We provide a potential molecular mechanistic approach describing that the effect of rOly on adipocytes is mediated by tubulin acetylation and AMPK phosphorylation. © 2019 Elsevier Ltd
2018
Bein, A. ; Eventov-Friedman, S. ; Arbell, D. ; Schwartz, B. Intestinal tight junctions are severely altered in NEC preterm neonates. Pediatr Neonatol 2018, 59, 464-473.Abstract
BACKGROUND & AIMS: Necrotizing Enterocolitis (NEC) is a severe inflammatory disorder of the intestine endangering the health and survival of preterm infants. It is well established that the gut barrier is severely damaged in NEC patients, nonetheless an in depth investigation of modifications at the transcriptional and translational levels of tight junction genes and proteins during NEC are still missing. The aim of this study was to investigate changes in the expression of tight junctions and other associated proteins during NEC and determine their correlation to the disease severity. METHODS: We examined intestinal specimens from six NEC patients and compared them with six control specimens from patients that underwent surgeries for reasons other than NEC. The expression of genes was analyzed by real time PCR and protein expression by immunohistochemistry. RESULTS: The tight junction genes ZO-1, occludin, cingulin and claudin-4 were significantly down regulated in NEC. Furthermore TLR4, BAX and SIRT1 genes were found to be significantly down regulated while HIF-1A showed a trend of up regulation in NEC patients. These changes were found to correlate with the severity of the disease. Additionally we demonstrated in an ex-vivo model that hypoxic conditions initiated a destructive process of the epithelial barrier. We also showed that the expression of the tight junction proteins ZO-1 and occludin were significantly down regulated in NEC specimens. CONCLUSIONS: The expression of tight junction proteins and their encoding genes are significantly altered in NEC. We surmise that SIRT1 and HIF-1A may play a role in controlling these effects.
Vetvicka, V. ; Gover, O. ; Hayby, H. ; Danay, O. ; Ezov, N. ; Hadar, Y. ; Schwartz, B. Spatial Distribution of Glucan Type and Content between Caps and Stalks in Pleurotus eryngii: Impact on the Anti-inflammatory Functionality. International journal of molecular sciences 2018, 19, 3371. Publisher's VersionAbstract
: Pleurotus eryngii is recognized for its prominent nutritional and medicinal value. In our study, we tested the effect of glucans on lipopolysaccharide (LPS)-induced production of TNF-α. We demonstrated that glucan extracts are more effective than mill mushroom preparations. Additionally, the effectiveness of stalk-derived glucans were slightly more pronounced than of caps. Cap and stalk glucans from mill or isolated glucan competed dose-dependently with anti-Dectin-and anti-CR-3 antibodies, indicating that they contain β-glucans recognized by these receptors. Using the dextran sulfate sodium (DSS)-inflammatory bowel disease mice model, intestinal inflammatory response to the mill preparations was measured and compared to extracted glucan fractions from caps and stalks. We found that mill and glucan extracts were very effective in downregulating IFN-γ and MIP-2 levels and that stalk-derived preparations were more effective than from caps. The tested glucans were equally effective in regulating the number of CD14/CD16 monocytes and upregulating the levels of fecal-released IgA to almost normal levels. In conclusion, the most effective glucans in ameliorating some IBD-inflammatory associated symptoms induced by DSS treatment in mice were glucan extracts prepared from the stalk of P. eryngii. These spatial distinctions may be helpful in selecting more effective specific anti-inflammatory mushrooms-derived glucans.
Shaoul, R. ; Moati, D. ; Schwartz, B. ; Pollak, Y. ; Sukhotnik, I. Effect of Pomegranate Juice on Intestinal Recovery Following Methotrexate-Induced Intestinal Damage in a Rat Model. J Am Coll Nutr 2018, 37, 406-414.Abstract
BACKGROUND/AIMS: Several studies have demonstrated the antimicrobial, antihelminthic, and antioxidant potential of the active ingredients of pomegranate (PMG) extracts, suggesting their preventive and curative role in several gastrointestinal disorders. In the present study, the authors evaluated the effects of oral PMG supplementation on intestinal structural changes, enterocyte proliferation, and apoptosis during methotrexate (MTX)-induced intestinal damage in a rat. METHODS: Male rats were divided into 4 experimental groups: control rats; CONTR-PMG rats were treated with oral PMG given by gavage once a day 72 hours before and 72 hours following vehicle injection; MTX rats were treated with single dose of methotrexate; and MTX-PMG rats were treated with oral PMG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation, and enterocyte apoptosis were determined 72 hours following MTX injection. Western blotting was used to determine phosphorylated extracellular signal-regulated kinase (p-ERK) and caspase 3 protein levels. RESULTS: MTX-PMG rats demonstrated greater jejunal and ileal bowel and mucosal weights, greater jejunal and ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared with MTX animals. A significant decrease in enterocyte apoptosis in ileum of MTX-PMG rats (vs MTX) was associated with a decrease in caspase 3 protein expression as well as increased cell proliferation, which was correlated with elevated p-ERK protein levels. CONCLUSIONS: Treatment with oral PMG prevents mucosal injury and improves intestinal recovery following MTX injury in the rat.
Sukhotnik, I. ; Moati, D. ; Shaoul, R. ; Loberman, B. ; Pollak, Y. ; Schwartz, B. Quercetin prevents small intestinal damage and enhances intestinal recovery during methotrexate-induced intestinal mucositis of rats. Food Nutr Res 2018, 62.Abstract
Background: Gastrointestinal mucositis occurs as a consequence of cytotoxic treatment. Quercetin (QCT) is a bioflavonoid that exerts significant antioxidant activity and anti-inflammatory as well as anti-malignancy properties. Objective: To evaluate the effects of oral QCT consumption in preventing intestinal mucosal damage and stimulating intestinal recovery following methotrexate (MTX)-induced intestinal damage in a rat model. Design: Male Sprague-Dawley rats were divided into four groups: Control Group A (CONTR) - rats were treated with 2 cc of saline given by gavage for 6 days. Group B (CONTR-QCT) - rats were treated with QCT (100 mg/kg in 2 ml saline) given by gavage 3 days before and 3 days after intraperitoneal (IP) injection of saline. Group C (MTX) - rats were injected a single dose (25 mg/kg) of MTX IP. Group D (MTX-QCT) rats were treated with QCT (similar to Group B) 3 days before and 3 days after IP MTX injection. Intestinal mucosal parameters (bowel and mucosal weight, mucosal DNA and protein content, and villus height and crypt depth), enterocytes proliferation, and enterocyte apoptosis degree were investigated at sacrifice on the 4th day after MTX or saline injection. Results: Administration of QCT to MTX-treated rats resulted in: (1) significant decrease in intestinal injury score, (2) significant increase in intestinal and mucosal weight in jejunum and ileum, (3) increase on the protein content of the ileum, (4) increase in the villus height in the ileum, (5) increase of crypt depth of jejunum and ileum, and (6) increase in cell proliferation in the jejunum and ileum compared to MTX-nontreated group. Conclusions: Administration of QCT prevents intestinal damage and improves intestinal recovery following MTX-induced intestinal damage in a rat. We surmise that the effect of QCT is based on induction of cell proliferation in the crypt rather than inhibition of apoptosis.
Nimri, L. ; Staikin, K. ; Peri, I. ; Yehuda-Shnaidman, E. ; Schwartz, B. Ostreolysin induces browning of adipocytes and ameliorates hepatic steatosis. J Gastroenterol Hepatol 2018, 33, 1990-2000.Abstract
BACKGROUND AND AIM: Non-alcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Deposition of excess triglycerides in liver cells, a hallmark of NAFLD, is associated with loss of insulin sensitivity. Ostreolysin (Oly) is a 15-kDa fungal protein known to interact with cholesterol-enriched raft-like membrane domains. We aim to test whether a recombinant version of Oly (rOly) can induce functional changes in vitro in adipocytes or in vivo in mice fed a high-fat diet (HFD). METHODS: White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly. Male C57BL/6 mice were fed a control or HFD and treated with saline or with rOly (1 mg/kg BW) every other day for 4 weeks. RESULTS: White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly acquire a browning phenotype through activation of 5' adenosine monophosphate-activated protein kinase and downregulation of tumor necrosis factor α-mediated activation of IκB kinase ε and TANK-binding kinase 1. HFD-fed mice treated with rOly showed a 10% reduction in BW and improved glucose tolerance, which paralleled improved expression of liver and adipose functionality, metabolism, and inflammation status, mimicking the in vitro findings. CONCLUSION: This study provides first evidence of rOly's prevention of HFD-induced NAFLD by stimulating liver and adipose muscle tissue functionality and oxidative potential, improving glucose tolerance, and ameliorating the metabolic profile of diet-induced obese mice.
2017
Oren, T. ; Nimri, L. ; Yehuda-Shnaidman, E. ; Staikin, K. ; Hadar, Y. ; Friedler, A. ; Amartely, H. ; Slutzki, M. ; Di Pizio, A. ; Niv, M. Y. ; et al. Recombinant ostreolysin induces brown fat-like phenotype in HIB-1B cells. Mol Nutr Food Res 2017, 61.Abstract
SCOPE: Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. METHODS AND RESULTS: Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated β-tubulin expression, and therefore microtubules might be involved in its mechanism of action. CONCLUSION: rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Nimri, L. ; Spivak, O. ; Tal, D. ; Schälling, D. ; Peri, I. ; Graeve, L. ; Salame, T. M. ; Yarden, O. ; Hadar, Y. ; Schwartz, B. A recombinant fungal compound induces anti-proliferative and pro-apoptotic effects on colon cancer cells. Oncotarget 2017, 8 28854-28864.Abstract
Finding intracellular pathways and molecules that can prevent the proliferation of colon cancer cells can provide significant bases for developing treatments for this disease. Ostreolysin (Oly) is a protein found in the mushroom Pleurotus ostreatus, and we have produced a recombinant version of this protein (rOly).We measured the viability of several colon cancer cells treated with rOly. Xenografts and syngeneic colon cancer cells were injected into in vivo mouse models, which were then treated with this recombinant protein.rOly treatment induced a significant reduction in viability of human and mouse colon cancer cells. In contrast, there was no reduction in the viability of normal epithelial cells from the small intestine. In the search for cellular targets of rOly, we showed that it enhances the anti-proliferative activity of drugs targeting cellular tubulin. This was accompanied by a reduction in the weight and volume of tumours in mice injected with rOly as compared to their respective control mice in two in vivo models.Our results advance the functional understanding of rOly as a potential anti-cancer treatment associated with pro-apoptotic activities preferentially targeting colon cancer cells.
Bein, A. ; Zilbershtein, A. ; Golosovsky, M. ; Davidov, D. ; Schwartz, B. LPS Induces Hyper-Permeability of Intestinal Epithelial Cells. Journal of Cellular Physiology 2017, 232, 381-390. Publisher's VersionAbstract
Necrotizing Enterocolitis (NEC) is a severe inflammatory disorder leading to high morbidity and mortality rates. A growing body of evidence demonstrate the key role of the Toll like receptor 4 (TLR4) in NEC. This membranal receptor recognizes lipopolysaccharides (LPS) from the bacterial wall and triggers an inflammatory response. The aim of the present study was to elucidate the effect of LPS on paracellular permeability known to be severely affected in NEC. IEC-18 cells were treated with LPS and the effects on morphology, paracellular permeability and their associated gene and protein expressions were measured. Our results show that LPS down regulated the expression of occludin and ZO-1 mRNAs while up regulating Cdkn1a. In addition LPS caused a significant increase in paracellular permeability and epithelial barrier damage. Finally ZO-1 protein was found to be spatially disarrayed in the intercellular junctions in response to LPS. We conclude that LPS adversely affected the functionality of the intestinal epithelial barrier suggesting a new mechanism by which bacterial infection may contribute to the development of NEC. J. Cell. Physiol. 232: 381–390, 2017. © 2016 Wiley Periodicals, Inc.
Avni, S. ; Ezove, N. ; Hanani, H. ; Yadid, I. ; Karpovsky, M. ; Hayby, H. ; Gover, O. ; Hadar, Y. ; Schwartz, B. ; Danay, O. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus eryngii. Int J Mol Sci 2017, 18.Abstract
Mushroom polysaccharides are edible polymers that have numerous reported biological functions; the most common effects are attributed to β-glucans. In recent years, it became apparent that the less abundant α-glucans also possess potent effects in various health conditions. Here we explore several species for their total, β and α-glucan content. was found to have the highest total glucan concentrations and the highest α-glucans proportion. We also found that the stalks (stipe) of the fruit body contained higher glucan content then the caps (pileus). Since mushrooms respond markedly to changes in environmental and growth conditions, we developed cultivation methods aiming to increase the levels of α and β-glucans. Using olive mill solid waste (OMSW) from three-phase olive mills in the cultivation substrate. We were able to enrich the levels mainly of α-glucans. Maximal total glucan concentrations were enhanced up to twice when the growth substrate contained 80% of OMSW compared to no OMSW. Taking together this study demonstrate that can serve as a potential rich source of glucans for nutritional and medicinal applications and that glucan content in mushroom fruiting bodies can be further enriched by applying OMSW into the cultivation substrate.
Oren, T. ; Nimri, L. ; Yehuda-Shnaidman, E. ; Staikin, K. ; Hadar, Y. ; Friedler, A. ; Amartely, H. ; Slutzki, M. ; Di Pizio, A. ; Niv, M. Y. ; et al. Recombinant ostreolysin induces brown fat-like phenotype in HIB-1B cells. Molecular Nutrition & Food ResearchMolecular Nutrition & Food ResearchMol. Nutr. Food Res. 2017, 61, 1700057. Publisher's VersionAbstract
Scope Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. Methods and results Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated ?-tubulin expression, and therefore microtubules might be involved in its mechanism of action. Conclusion rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Oren, T. ; Nimri, L. ; Yehuda-Shnaidman, E. ; Staikin, K. ; Hadar, Y. ; Friedler, A. ; Amartely, H. ; Slutzki, M. ; Di Pizio, A. ; Niv, M. Y. ; et al. Recombinant ostreolysin induces brown fat-like phenotype in HIB-1B cells. Molecular Nutrition & Food Research 2017, 61, 1700057. Publisher's VersionAbstract
Scope Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. Methods and results Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated β-tubulin expression, and therefore microtubules might be involved in its mechanism of action. Conclusion rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Shefer-Weinberg, D. ; Sasson, S. ; Schwartz, B. ; Argov-Argaman, N. ; Tirosh, O. Deleterious effect of n-3 polyunsaturated fatty acids in non-alcoholic steatohepatitis in the fat-1 mouse model. Clinical Nutrition Experimental 2017, 12, 37 - 49. Publisher's VersionAbstract
Summary Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of pathologies, ranging from hepatocellular steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. It has been suggested that fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFA) induce beneficial effects in NAFLD. However, n-3 PUFA are sensitive to peroxidation that generate free radicals and reactive aldehydes. We aimed at determining whether changing the tissue ratio of n-3 to n-6 PUFA may be beneficial or alternatively harmful to the etiology of NAFLD. The transgenic Fat-1 mouse model was used to determine whether n-3 PUFA positively or negatively affect the development of NAFLD. fat-1mice express the fat-1 gene of Caenorhabditis elegans, which encodes an n-3 fatty-acid desaturase that converts n-6 to n-3 fatty acids. Wild-type C57BL/6 mice served as the control group. Both groups of mice were fed methionine and choline deficient (MCD) diet, which induces NASH within 4 weeks. The study shows that NASH developed faster and was more severe in mice from the fat-1 group when compared to control C57BL/6 mice. This was due to enhanced lipid peroxidation of PUFA in the liver of the fat-1 mice as compared to the control group. Results of our mice study suggest that supplementing the diet of individuals who develop or have fatty livers with n-3 PUFA should be carefully considered and if recommended adequate antioxidants should be added to the diet in order to reduce such risk.
2016
Roiz, L. ; Smirnoff, P. ; Lewin, I. ; Shoseyov, O. ; Schwartz, B. Human recombinant RNASET2: A potential anti-cancer drug. Oncoscience 2016, 3 71 - 84. Publisher's Version