2023
Hansen, T. ; Lee, J. ; Reicher, N. ; Ovadia, G. ; Guo, S. ; Guo, W. ; Liu, J. ; Braslavsky, I. ; Rudich, Y. ; Davies, P. L. .
Ice Nucleation Proteins Self-Assemble Into Large Fibres To Trigger Freezing At Near 0 °C.
eLife 2023,
12, RP91976.
Publisher's VersionAbstractIn nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins (INPs) of common environmental bacteria like Pseudomonas syringae and Pseudomonas borealis. However, individually, these 100 kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an INP gene into Escherichia coli led to efficient ice nucleation. Here, we demonstrate that a positively charged subdomain at the C-terminal end of the central β-solenoid of the INP is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the INP multimers form fibres that are ~5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Thosar, A. U. ; Shalom, Y. ; Braslavsky, I. ; Drori, R. ; Patel, A. J. .
Accumulation Of Antifreeze Proteins On Ice Is Determined By Adsorption.
Journal of the American Chemical Society 2023,
145, 17597–17602.
Publisher's VersionAbstractAntifreeze proteins (AFPs) facilitate the survival of diverse organisms in frigid environments by adsorbing to ice crystals and suppressing their growth. The rate of AFP accumulation on ice is determined by an interplay between AFP diffusion from the bulk solution to the ice–water interface and the subsequent adsorption of AFPs to the interface. To interrogate the relative importance of these two processes, here, we combine nonequilibrium fluorescence experiments with a reaction–diffusion model. We find that as diverse AFPs accumulate on ice, their concentration in the aqueous solution does not develop a gradient but remains equal to its bulk concentration throughout our experiments. These findings lead us to conclude that AFP accumulation on ice crystals, which are smaller than 100 μm in radius, is not limited by the diffusion of AFPs, but by the kinetics of AFP adsorption. Our results imply that mass transport limitations do not hinder AFPs from performing their biological function.
Mutsenko, V. ; Anastassopoulos, E. ; Zaragotas, D. ; Simaioforidou, A. ; Tarusin, D. ; Lauterboeck, L. ; Sydykov, B. ; Brunotte, R. ; Brunotte, K. ; Rozanski, C. ; et al. Monitoring Of Freezing Patterns Within 3D Collagen-Hydroxyapatite Scaffolds Using Infrared Thermography.
2023,
111, 57 - 69.
Publisher's VersionAbstractThe importance of cryopreservation in tissue engineering is unceasingly increasing. Preparation, cryopreservation, and storage of tissue-engineered constructs (TECs) at an on-site location offer a convenient way for their clinical application and commercialization. Partial freezing initiated at high sub-zero temperatures using ice-nucleating agents (INAs) has recently been applied in organ cryopreservation. It is anticipated that this freezing technique may be efficient for the preservation of both scaffold mechanical properties and cell viability of TECs. Infrared thermography is an instrumental method to monitor INAs-mediated freezing of various biological entities. In this paper, porous collagen-hydroxyapatite (collagen-HAP) scaffolds were fabricated and characterized as model TECs, whereas infrared thermography was proposed as a method for monitoring the crystallization-related events on their partial freezing down to −25 °C. Intra- and interscaffold latent heat transmission were descriptively evaluated. Nucleation, freezing points as well as the degree of supercooling and duration of crystallization were calculated based on inspection of respective thermographic curves. Special consideration was given to the cryoprotective agent (CPA) composition (Snomax®, crude leaf homogenate (CLH) from Hippophae rhamnoides, dimethyl sulfoxide (Me2SO) and recombinant type-III antifreeze protein (AFP)) and freezing conditions (‘in air’ or ‘in bulk CPA’). For CPAs without ice nucleation activity, thermographic measurements demonstrated that the supercooling was significantly milder in the case of scaffolds present in a CPA solution compared to that without them. This parameter (ΔT, °C) altered with the following tendency: 10 Me2SO (2.90 ± 0.54 (‘scaffold in a bulk CPA’) vs. 7.71 ± 0.43 (‘bulk CPA’, P < 0.0001)) and recombinant type-III AFP, 0.5 mg/ml (2.65 ± 0.59 (‘scaffold in a bulk CPA’) vs. 7.68 ± 0.34 (‘bulk CPA’, P < 0.0001)). At the same time, in CPA solutions with ice nucleation activity the least degree of supercooling and the longest crystallization duration (Δt, min) for scaffolds frozen ‘in air’ were documented for CLH from Hippophae rhamnoides (1.57 ± 0.37 °C and 21.86 ± 2.93 min) compared to Snomax, 5 μg/ml (2.14 ± 0.33 °C and 19.91 ± 4.72 min), respectively). Moreover, when frozen ‘in air’ in CLH from Hippophae rhamnoides, collagen-HAP scaffolds were shown to have the longest ice-liquid equilibrium phase during crystallization and the lowest degree of supercooling followed by alginate core-shell capsules and nanofibrous electrospun fiber mats made of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) (PCL/PLA) blend. The paper offers evidence that infrared thermography provides insightful information for monitoring partial freezing events in TECs when using different freezing containers, CPAs and conditions. This may further TEC-specific cryopreservation with enhanced batch homogeneity and optimization of CPA compositions of natural origin active at warm sub-zero temperatures.
2021
Xue, Y. ; Braslavsky, I. ; Quake, S. R. .
Temperature Effect On Polymerase Fidelity.
JOURNAL OF BIOLOGICAL CHEMISTRY 2021,
297.
AbstractThe discovery of extremophiles helped enable the development of groundbreaking technology such as PCR. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is underexplored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that the reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not the reaction temperature, thus suggesting that the reaction temperature increases the global error rate of polymerases independent of the sequence context. Intriguingly, we also found that the DNA polymerase I of psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19 degrees C, which is well below the freezing temperature of water. Our results provide a useful reference for how the reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.
Bissoyi, A. ; Braslavsky, I. .
Adherent Cell Thawing By Infrared Radiation.
2021.
Publisher's VersionAbstractCryopreservation of adherent cells is crucial for commercial cell therapy technology, including effective distribution and storage. Fast thawing has been shown to increase cell recovery in vitrified samples. Previously, radiofrequency (RF) has been investigated as a heating source on large samples, either with or without magnetic particles. Also, laser heating with the aid of dye or nanoparticles has been utilized on sub–millimeter samples successfully. For slow freezing cryopreservation methods, the influence of rate of thawing on viability is less clear. Cryopreservation of surface adhered cells result in many cases in detachment from the surface. We illustrate how intense infrared radiation from a focused halogen illuminator accelerates thawing. We show that two epithelial cell lines, retinal pigment epithelium cells and heterogeneous human epithelial colorectal adenocarcinoma cells, can be effectively cryopreserved and recovered using a combination of slow freezing and fast thawing under infrared illumination. We were able to successfully thaw samples, of 2–4 mm thick, including the media, on the order of a second, providing a heating rate of thousands of Kelvin per minute. Under optimal conditions, we observed higher post–thawing cell viability rates and higher cell adhesion with infrared thawing than with water bath thawing. We suggest that bulk warming with infrared radiation has an advantage over surface warming of surface–attached cells, as it alleviates cell stress during the process of thawing. These findings will pave the way for novel approaches to treating substrate–adhered cells and 3D scaffolds with cells and organoids. This technology may serve as a crucial component in lab–on–chip systems for medical testing and therapeutic use.
Chasnitsky, M. ; Yashunsky, V. ; Braslavsky, I. .
Heat Flux Balance Description Of Unidirectional Freezing And Melting Dynamics On A Translational Temperature Gradient Stage.
2021,
161, 106734.
Publisher's VersionAbstractDirectional solidification occurs in industrial and natural processes, such as freeze-casting, metal processing, biological cryopreservation and freezing of soils. Translational temperature gradient stage allows to control the process of directional solidification and to visualize it with optical microscope. In this stage freezing velocity and temperature gradient are decoupled and are independently controlled. Here we study the dynamics of the phase transition interface in thin water samples using translational temperature gradient stage. We follow position of the ice–water interface with optical microscopy and compare it to solution of one dimensional Stefan problem in the low velocity limit. We find an agreement between experimental observations and theoretical predictions for constant velocity and during acceleration of the ice front. This work presents a practical framework for analysis and design of experiments on a translational temperature gradient stage.
2020
Bar-Dolev, M. ; K., B. ; Braslavsky, I. ; P.L, D. .
Structure&Ndash;Function Of Ibps And Their Interactions With Ice. In
Antifreeze Proteins ; Springer, Cham. , 2020; Vol. 2.
Publisher's VersionAbstractThe diversity among the dozen antifreeze proteins (AFPs) and other ice-binding proteins (IBPs) with known or robustly predicted three-dimensional structures is remarkable. Their protein folds range from single short alpha-helices to long beta-solenoids and small globular domains with mixed secondary structure. IBPs differ one from another not only in structure, but also in activity levels, affinity for different ice planes, and ice-binding site size, shape, and amino acid composition. IBPs arose from different evolutionary routes on many different occasions, and even function in different ways to protect the host organism from freeze injury. The only unifying feature of IBPs is their basic function, to bind to ice, and even this is achieved with different orientations and kinetics. This chapter covers the structural diversity of IBPs and their ice-binding sites (IBS). We discuss the correlation between IBS structure and size with activity levels, and how the structural differences are manifested in their binding characteristics. Further we discuss the protein:ice interface at the molecular level and recent mechanisms of ice recognition.
2019
Bissoyi, A. ; Reicher, N. ; Chasnitsky, M. ; Arad, S. ; Koop, T. ; Rudich, Y. ; Braslavsky, I. .
Ice Nucleation Properties Of Ice-Binding Proteins From Snow Fleas.
Biomolecules 2019,
9.
AbstractIce-binding proteins (IBPs) are found in many organisms, such as fish and hexapods, plants, and bacteria that need to cope with low temperatures. Ice nucleation and thermal hysteresis are two attributes of IBPs. While ice nucleation is promoted by large proteins, known as ice nucleating proteins, the smaller IBPs, referred to as antifreeze proteins (AFPs), inhibit the growth of ice crystals by up to several degrees below the melting point, resulting in a thermal hysteresis (TH) gap between melting and ice growth. Recently, we showed that the nucleation capacity of two types of IBPs corresponds to their size, in agreement with classical nucleation theory. Here, we expand this finding to additional IBPs that we isolated from snow fleas (the arthropod Collembola), collected in northern Israel. Chemical analyses using circular dichroism and Fourier-transform infrared spectroscopy data suggest that these IBPs have a similar structure to a previously reported snow flea antifreeze protein. Further experiments reveal that the ice-shell purified proteins have hyperactive antifreeze properties, as determined by nanoliter osmometry, and also exhibit low ice-nucleation activity in accordance with their size.
Wang, S. ; Duan, Y. ; Yan, Y. ; Adar, C. ; Braslavsky, I. ; Chen, B. ; Huang, T. ; Qiu, S. ; Li, X. ; Inglis, B. M. ; et al. Improvement Of Sperm Cryo-Survival Of Cynomolgus Macaque (Macaca Fascicularis) By Commercial Egg-Yolk–Free Freezing Medium With Type Iii Antifreeze Protein.
Animal Reproduction Science 2019,
210, 106177.
Publisher's VersionAbstractWhen nonhuman primate sperm undergoes cryopreservation in an egg yolk medium there is an increased risk that the egg yolk might adversely affect the sperm due to containing of avian pathogens. Although commercial egg-yolk-free medium for human sperm cryopreservation has been used for macaque sperm, the cryo-survival remains less than optimal. The present study, therefore, was conducted to determine the optimal concentration of antifreeze protein (AFP) III supplemented in a commercial egg-yolk-free medium for cynomolgus macaque (Macaca fascicularis) sperm cryo-survival. The function of frozen-thawed sperm was evaluated by post-thaw sperm motility, acrosome integrity, and mitochondrial function. Results indicate that the sperm motilities were greater when 0.1, 1, and 10 μg/ml of AFP III were supplemented into the sperm freezing medium (P < 0.05). In addition, the mitochondrial membrane potential was greater in the sperm cryopreserved with the medium that was supplemented with 0.1 μg/ml of AFP III (P < 0.05). The addition of AFP III at any of the concentrations, however, did not have any cryoprotection effect on the sperm acrosome, and the greatest concentrations of AFP III at 100 and 200 μg/ml had detrimental effects on acrosomal integrity (P < 0.05). Results of the present study indicated the methods used are effective for the cryopreservation of cynomolgus monkey sperm while reducing associated health risks due to avian pathogens being present in egg yolk-based extenders.
Croote, D. ; Braslavsky, I. ; Quake, S. R. .
Addressing Complex Matrix Interference Improves Multiplex Food Allergen Detection By Targeted Lc–Ms/Ms.
Analytical ChemistryAnalytical Chemistry 2019.
Publisher's VersionAbstractThe frequent use of precautionary food allergen labeling (PAL) such as “may contain” frustrates allergic individuals who rely on such labeling to determine whether a food is safe to consume. One technique to study whether foods contain allergens is targeted liquid chromatography-tandem mass spectrometry (LC–MS/MS) employing scheduled multiple reaction monitoring (MRM). However, the applicability of a single MRM method to many commercial foods is unknown as complex and heterogeneous interferences derived from the unique composition of each food matrix can hinder quantification of trace amounts of allergen contamination. We developed a freely available, open source software package MAtrix-Dependent Interference Correction (MADIC) to identify interference and applied it with a method targeting 14 allergens. Among 84 unique food products, we found patterns of allergen contamination such as wheat in grains, milk in chocolate-containing products, and soy in breads and corn flours. We also found additional instances of contamination in products with and without PAL as well as highly variable soy content in foods containing only soybean oil and/or soy lecithin. These results demonstrate the feasibility of applying LC–MS/MS to a variety of food products with sensitive detection of multiple allergens in spite of variable matrix interference.The frequent use of precautionary food allergen labeling (PAL) such as “may contain” frustrates allergic individuals who rely on such labeling to determine whether a food is safe to consume. One technique to study whether foods contain allergens is targeted liquid chromatography-tandem mass spectrometry (LC–MS/MS) employing scheduled multiple reaction monitoring (MRM). However, the applicability of a single MRM method to many commercial foods is unknown as complex and heterogeneous interferences derived from the unique composition of each food matrix can hinder quantification of trace amounts of allergen contamination. We developed a freely available, open source software package MAtrix-Dependent Interference Correction (MADIC) to identify interference and applied it with a method targeting 14 allergens. Among 84 unique food products, we found patterns of allergen contamination such as wheat in grains, milk in chocolate-containing products, and soy in breads and corn flours. We also found additional instances of contamination in products with and without PAL as well as highly variable soy content in foods containing only soybean oil and/or soy lecithin. These results demonstrate the feasibility of applying LC–MS/MS to a variety of food products with sensitive detection of multiple allergens in spite of variable matrix interference.
Chasnitsky, M. ; Braslavsky, I. .
Ice-Binding Proteins And The Applicability And Limitations Of The Kinetic Pinning Model.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2019,
377, 20180391.
Publisher's Version Guy Preis, S. ; Chayet, H. ; Katz, A. ; Yashunsky, V. ; Kaner, A. ; Ullman, S. ; Braslavsky, I. .
Labyrinth Ice Pattern Formation Induced By Near-Infrared Irradiation.
Science Advances 2019,
5, eaav1598.
Publisher's VersionAbstractPatterns are broad phenomena that relate to biology, chemistry, and physics. The dendritic growth of crystals is the most well-known ice pattern formation process. Tyndall figures are water-melting patterns that occur when ice absorbs light and becomes superheated. Here, we report a previously undescribed ice and water pattern formation process induced by near-infrared irradiation that heats one phase more than the other in a two-phase system. The pattern formed during the irradiation of ice crystals tens of micrometers thick in solution near equilibrium. Dynamic holes and a microchannel labyrinth then formed in specific regions and were characterized by a typical distance between melted points. We concluded that the differential absorption of water and ice was the driving force for the pattern formation. Heating ice by laser absorption might be useful in applications such as the cryopreservation of biological samples.
Eickhoff, L. ; Dreischmeier, K. ; Zipori, A. ; Sirotinskaya, V. ; Adar, C. ; Reicher, N. ; Braslavsky, I. ; Rudich, Y. ; Koop, T. .
Contrasting Behavior Of Antifreeze Proteins: Ice Growth Inhibitors And Ice Nucleation Promoters.
The Journal of Physical Chemistry Letters 2019,
10, 966 - 972.
Publisher's VersionAbstractSeveral types of natural molecules interact specifically with ice crystals. Small antifreeze proteins (AFPs) adsorb to particular facets of ice crystals, thus inhibiting their growth, whereas larger ice-nucleating proteins (INPs) can trigger the formation of new ice crystals at temperatures much higher than the homogeneous ice nucleation temperature of pure water. It has been proposed that both types of proteins interact similarly with ice and that, in principle, they may be able to exhibit both functions. Here we investigated two naturally occurring antifreeze proteins, one from fish, type-III AFP, and one from beetles, TmAFP. We show that in addition to ice growth inhibition, both can also trigger ice nucleation above the homogeneous freezing temperature, providing unambiguous experimental proof for their contrasting behavior. Our analysis suggests that the predominant difference between AFPs and INPs is their molecular size, which is a very good predictor of their ice nucleation temperature.Several types of natural molecules interact specifically with ice crystals. Small antifreeze proteins (AFPs) adsorb to particular facets of ice crystals, thus inhibiting their growth, whereas larger ice-nucleating proteins (INPs) can trigger the formation of new ice crystals at temperatures much higher than the homogeneous ice nucleation temperature of pure water. It has been proposed that both types of proteins interact similarly with ice and that, in principle, they may be able to exhibit both functions. Here we investigated two naturally occurring antifreeze proteins, one from fish, type-III AFP, and one from beetles, TmAFP. We show that in addition to ice growth inhibition, both can also trigger ice nucleation above the homogeneous freezing temperature, providing unambiguous experimental proof for their contrasting behavior. Our analysis suggests that the predominant difference between AFPs and INPs is their molecular size, which is a very good predictor of their ice nucleation temperature.
Kaleda, A. ; Haleva, L. ; Sarusi, G. ; Pinsky, T. ; Mangiagalli, M. ; Bar Dolev, M. ; Lotti, M. ; Nardini, M. ; Braslavsky, I. .
Saturn-Shaped Ice Burst Pattern And Fast Basal Binding Of An Ice-Binding Protein From An Antarctic Bacterial Consortium.
Langmuir 2019,
35, 7337 - 7346.
Publisher's VersionAbstractIce-binding proteins (IBPs) bind to ice crystals and control their growth, enabling host organisms to adapt to subzero temperatures. By binding to ice, IBPs can affect the shape and recrystallization of ice crystals. The shapes of ice crystals produced by IBPs vary and are partially due to which ice planes the IBPs are bound to. Previously, we have described a bacterial IBP found in the metagenome of the symbionts of Euplotes focardii (EfcIBP). EfcIBP shows remarkable ice recrystallization inhibition activity. As recrystallization inhibition of IBPs and other materials are important to the cryopreservation of cells and tissues, we speculate that the EfcIBP can play a future role as an ice recrystallization inhibitor in cryopreservation applications. Here we show that EfcIBP results in a Saturn-shaped ice burst pattern, which may be due to the unique ice-plane affinity of the protein that we elucidated using the fluorescent-based ice-plane affinity analysis. EfcIBP binds to ice at a speed similar to that of other moderate IBPs (5 ± 2 mM–1 s–1); however, it is unique in that it binds to the basal and previously unobserved pyramidal near-basal planes, while other moderate IBPs typically bind to the prism and pyramidal planes and not basal or near-basal planes. These insights into EfcIBP allow a better understanding of the recrystallization inhibition for this unique protein.Ice-binding proteins (IBPs) bind to ice crystals and control their growth, enabling host organisms to adapt to subzero temperatures. By binding to ice, IBPs can affect the shape and recrystallization of ice crystals. The shapes of ice crystals produced by IBPs vary and are partially due to which ice planes the IBPs are bound to. Previously, we have described a bacterial IBP found in the metagenome of the symbionts of Euplotes focardii (EfcIBP). EfcIBP shows remarkable ice recrystallization inhibition activity. As recrystallization inhibition of IBPs and other materials are important to the cryopreservation of cells and tissues, we speculate that the EfcIBP can play a future role as an ice recrystallization inhibitor in cryopreservation applications. Here we show that EfcIBP results in a Saturn-shaped ice burst pattern, which may be due to the unique ice-plane affinity of the protein that we elucidated using the fluorescent-based ice-plane affinity analysis. EfcIBP binds to ice at a speed similar to that of other moderate IBPs (5 ± 2 mM–1 s–1); however, it is unique in that it binds to the basal and previously unobserved pyramidal near-basal planes, while other moderate IBPs typically bind to the prism and pyramidal planes and not basal or near-basal planes. These insights into EfcIBP allow a better understanding of the recrystallization inhibition for this unique protein.
Karlsson, J. O. ; M., ; Braslavsky, I. ; Elliott, J. A. W. .
Protein&Ndash;Water&Ndash;Ice Contact Angle.
Langmuir 2019,
35, 7383 - 7387.
Publisher's VersionAbstractThe protein–water–ice contact angle is a controlling parameter in diverse fields. Here we show that data from three different experiments, at three different length scales, with three different proteins, in three different laboratories yield a consistent value for the protein–water–ice contact angle (88.0 ± 1.3°) when analyzed using the Gibbs–Thomson equation. The measurements reinforce the validity of each other, and the fact that similar values are obtained across diverse length scales, experiments, and proteins yields insight into protein–water interactions and the applicability of thermodynamics at the nanoscale.The protein–water–ice contact angle is a controlling parameter in diverse fields. Here we show that data from three different experiments, at three different length scales, with three different proteins, in three different laboratories yield a consistent value for the protein–water–ice contact angle (88.0 ± 1.3°) when analyzed using the Gibbs–Thomson equation. The measurements reinforce the validity of each other, and the fact that similar values are obtained across diverse length scales, experiments, and proteins yields insight into protein–water interactions and the applicability of thermodynamics at the nanoscale.
Kam, D. ; Chasnitsky, M. ; Nowogrodski, C. ; Braslavsky, I. ; Abitbol, T. ; Magdassi, S. ; Shoseyov, O. .
Direct Cryo Writing Of Aerogels Via 3D Printing Of Aligned Cellulose Nanocrystals Inspired By The Plant Cell Wall.
Colloids and Interfaces 2019,
3.
Publisher's VersionAbstractAerogel objects inspired by plant cell wall components and structures were fabricated using extrusion-based 3D printing at cryogenic temperatures. The printing process combines 3D printing with the alignment of rod-shaped nanoparticles through the freeze-casting of aqueous inks. We have named this method direct cryo writing (DCW) as it encompasses in a single processing step traditional directional freeze casting and the spatial fidelity of 3D printing. DCW is demonstrated with inks that are composed of an aqueous mixture of cellulose nanocrystals (CNCs) and xyloglucan (XG), which are the major building blocks of plant cell walls. Rapid fixation of the inks is achieved through tailored rheological properties and controlled directional freezing. Morphological evaluation revealed the role of ice crystal growth in the alignment of CNCs and XG. The structure of the aerogels changed from organized and tubular to disordered and flakey pores with an increase in XG content. The internal structure of the printed objects mimics the structure of various wood species and can therefore be used to create wood-like structures via additive manufacturing technologies using only renewable wood-based materials.