Ramot, Y. ; Zandani, G. ; Madar, Z. ; Deshmukh, S. ; Nyska, A. .
Utilization Of A Deep Learning Algorithm For Microscope-Based Fatty Vacuole Quantification In A Fatty Liver Model In Mice.
TOXICOLOGIC PATHOLOGY 2020,
48, 702-707.
AbstractQuantification of fatty vacuoles in the liver, with differentiation from lumina of liver blood vessels and bile ducts, is an example where the traditional semiquantitative pathology assessment can be enhanced with artificial intelligence (AI) algorithms. Using glass slides of mice liver as a model for nonalcoholic fatty liver disease, a deep learning AI algorithm was developed. This algorithm uses a segmentation framework for vacuole quantification and can be deployed to analyze live histopathology fields during the microscope-based pathology assessment. We compared the manual semiquantitative microscope-based assessment with the quantitative output of the deep learning algorithm. The deep learning algorithm was able to recognize and quantify the percent of fatty vacuoles, exhibiting a strong and significant correlation (r = 0.87, P < .001) between the semiquantitative and quantitative assessment methods. The use of deep learning algorithms for difficult quantifications within the microscope-based pathology assessment can help improve outputs of toxicologic pathology workflows.
Bimro, E. T. ; Hovav, R. ; Nyska, A. ; Glazer, T. A. ; Madar, Z. .
High Oleic Peanuts Improve Parameters Leading To Fatty Liver Development And Change The Microbiota In Mice Intestine.
FOOD & NUTRITION RESEARCH 2020,
64.
AbstractBackground: Oleic-acid consumption can possibly prevent or delay metabolic diseases. In Israel, a Virginia-type peanut cultivar with a high content of oleic acid has been developed. Objective: This study examined the effect of consuming high oleic peanuts (D7) on the development of fatty liver compared to the standard HN strain. Design: The two peanut cultivars were added to normal diet (ND) and high-fat (HF) mouse diet. Male C57B1/6 mice were fed for 8 and 10 weeks on a 4% D7, 4% HN, or control diet. At the end of the experiments, blood and tissues were collected. Triglyceride, lipid levels, histology, and protein expression were examined. The diets' effects on intestinal microbiota were also evaluated. Results: Both D7 and HFD7 led to a reduction in plasma triglycerides. Lipids, triglycerides, and free fatty acids in the liver were low in diets containing D7. Additionally. CD36 expression decreased in the D7 group. Consumption of D7 led to higher Prevotella levels, and consumption of ND that contained HN or D7 led to a lower Firmicutes/Bacteroidetes ratio. Conclusion: These findings suggest that consumption of peanuts high in oleic acid (D7) may have the potential to delay primary fatty liver symptoms.
Assa-Glazer, T. ; Gorelick, J. ; Sela, N. ; Nyska, A. ; Bernstein, N. ; Madar, Z. .
Cannabis Extracts Affected Metabolic Syndrome Parameters In Mice Fed High-Fat/Cholesterol Diet.
CANNABIS AND CANNABINOID RESEARCH 2020,
5, 202-214.
AbstractIntroduction:Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndrome, which often includes obesity, diabetes, and dyslipidemia. Several studies in mice and humans have implicated the involvement of the gut microbiome in NAFLD. While cannabis may potentially be beneficial for treating metabolic disorders such as NAFLD, the effects of cannabis on liver diseases and gut microbiota profile are yet to be addressed. In this study, we evaluated the therapeutic effects of cannabis strains with different cannabinoid profiles on NAFLD progression. Materials and Methods:NAFLD was induced by feeding mice a high-fat/cholesterol diet (HFCD) for 6 weeks. During this period, cannabis extracts were administrated orally at a concentration of 5 mg/kg every 3 days. Profile of lipids, liver enzymes, glucose tolerance, and gene expression related to carbohydrate lipid metabolism and liver inflammation were analyzed. The effect of cannabis strains on microbiota composition in the gut was evaluated. Results:A cannabidiol (CBD)-rich extract produced an increase in inflammatory related gene expression and a less diverse microbiota profile, associated with increased fasting glucose levels in HFCD-fed mice. In contrast, mice receiving a tetrahydrocannabinol (THC)-rich extract exhibited moderate weight gain, improved glucose response curves, and a decrease in liver enzymes. Conclusions:The results of this study indicate that the administration of cannabis containing elevated levels of THC may help ameliorate symptoms of NAFLD, whereas administration of CBD-rich cannabis extracts may cause a proinflammatory effect in the liver, linked with an unfavorable change in the microbiota profile. Our preliminary data suggest that these effects are mediated by mechanisms other than increased expression of the endocannabinoid receptors cannabinoid receptor 1 (CB1) and CB2.
Altberg, A. ; Hovav, R. ; Chapnik, N. ; Madar, Z. .
Effect Of Dietary Oils From Various Sources On Carbohydrate And Fat Metabolism In Mice.
FOOD & NUTRITION RESEARCH 2020,
64.
AbstractBackground: Dietary oils differ in their fatty acid composition and the presence of additional microcomponents (antioxidants, etc.). These differences are thought to invoke different biochemical pathways, thus affecting fats and carbohydrates metabolism differently. Olive oil (OO) and soybean oil (SO) are common vegetable oils in the local cuisine. Peanuts oils of local varieties are viewed as potential sources of dietary vegetable oils, especially in the food industry. Objective: We examined the effect of four different dietary vegetable oils on carbohydrate and lipid metabolism in mice. The selected oils were OO, high in oleic acid, extracted from cultivated high oleic acid peanut (C-PO), regular peanut oil (PO), and SO. Design: In this study, 32 male C57BL/6J mice were randomly divided into four groups (n = 8 in each group) and were fed with four different diets enriched with 4% (w/w) dietary vegetable oils (OO, C-PO, PO, or SO). After 10 weeks, the mice were sacrificed. Western blot was used to examine proteins such as phospho-AMP-activated protein kinase (p-AMPK), ace-tyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), and Sirtuin 1 (SIRT1), whereas real-time polymerase chain reaction (PCR) was used to examine the expression of sterol regulatory element-binding protein-lc (SREBP-IC), fatty acid synthase (FAS), glucose-6-phosphatase (G6Pase), and CD36 transcripts. Results: In mice-fed SO, lipid accumulation was predominately in adipose tissue, accompanied a tendency decrease in insulin sensitivity. Mice-fed OO had lower plasma triglycerides (TG) and increased hepatic CD36 gene expression. The C-PO group presented lower messenger RNA (mRNA) levels in the liver for all examined genes: SREBP-1c, FAS, G6Pase, and CD36. There were no significant differences in weight gain, plasma cholesterol and high-density lipoprotein (HDL) cholesterol levels, hepatic ACC, SIRT1, AMPK, and CD36 protein levels or in liver function among the diets. Discussion: It seems that as long as fat is consumed in moderation, oil types may play a lesser role in the metabolism of healthy individuals. Conclusion: This finding has the potential to increase flexibility in choosing oil types for consumption.
Kaminsky-Kolesnikov, Y. ; Rauchbach, E. ; Abu-Halaka, D. ; Hahn, M. ; Garcia-Ruiz, C. ; Fernandez-Checa, J. C. ; Madar, Z. ; Tirosh, O. .
Cholesterol Induces Nrf-2-And Hif-1 Alpha-Dependent Hepatocyte Proliferation And Liver Regeneration To Ameliorate Bile Acid Toxicity In Mouse Models Of Nash And Fibrosis.
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020,
2020.
AbstractNonalcoholic steatohepatitis (NASH) is currently one of the most common liver diseases worldwide. The toxic effects of lipids and bile acids contribute to NASH. The regenerative pathway in response to damage to the liver includes activation of the inflammatory process and priming of hepatocytes to proliferate to restore tissue homeostasis. However, the effects of cholesterol on bile acid toxicity, inflammation, and fibrosis remain unknown. We have used two mouse models of bile acid toxicity to induce liver inflammation and fibrosis. A three-week study was conducted using wild-type mice receiving an atherogenic diet (1% (w/w) cholesterol and 0.5% (w/w) cholic acid) and its separate constituents. Mdr2-/- mice were fed a high-cholesterol-enriched diet or standard AIN-93 diet for 6 weeks. We measured serum transaminase levels to assess liver tissue necrosis and fibrosis; iNOS, SAA1, SAA2, and F4/80 levels to determine liver inflammation; PCNA and HGF levels to evaluate proliferative response; and Nrf-2, HIF-1 alpha, and downstream gene expression to establish protective responses. In both studies, high bile acid levels increased serum transaminases and liver fibrosis, whereas cholesterol supplementation attenuated these effects. Cholesterol supplementation activated survival and the robustness of HIF-1 alpha and Nrf-2 gene expression in hepatocytes, induced liver inflammation and hepatocyte proliferation, and inhibited stellate cell hyperplasia and fibrosis. In conclusion, our data show for the first time that cholesterol intake protects against bile acid liver toxicity. The balance between hepatic cholesterol and bile acid levels may be of prognostic value in liver disease progression and trajectory.