Publications by year


Publications by Authors

Recent Publications

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address:


Goldberg, D. ; Charni-Natan, M. ; Buchshtab, N. ; Bar-Shimon, M. ; Goldstein, I. Hormone-controlled cooperative binding of transcription factors drives synergistic induction of fasting-regulated genes. Nucleic Acids Res 2022, gkac358. Publisher's VersionAbstract
During fasting, hepatocytes produce glucose in response to hormonal signals. Glucagon and glucocorticoids are principal fasting hormones that cooperate in regulating glucose production via gluconeogenesis. However, how these hormone signals are integrated and interpreted to a biological output is unknown. Here, we use genome-wide profiling of gene expression, enhancer dynamics and transcription factor (TF) binding in primary mouse hepatocytes to uncover the mode of cooperation between glucagon and glucocorticoids. We found that compared to a single treatment with each hormone, a dual treatment directs hepatocytes to a pro-gluconeogenic gene program by synergistically inducing gluconeogenic genes. The cooperative mechanism driving synergistic gene expression is based on ‘assisted loading’ whereby a glucagon-activated TF (cAMP responsive element binding protein; CREB) leads to enhancer activation which facilitates binding of the glucocorticoid receptor (GR) upon glucocorticoid stimulation. Glucagon does not only activate single enhancers but also activates enhancer clusters, thereby assisting the loading of GR also across enhancer units within the cluster. In summary, we show that cells integrate extracellular signals by an enhancer-specific mechanism: one hormone-activated TF activates enhancers, thereby assisting the loading of a TF stimulated by a second hormone, leading to synergistic gene induction and a tailored transcriptional response to fasting.
Ron, I. ; Lerner, R. K. ; Rathaus, M. ; Livne, R. ; Ron, S. ; Barhod, E. ; Hemi, R. ; Tirosh, A. ; Strauss, T. ; Ofir, K. ; et al. The adipokine FABP4 is a key regulator of neonatal glucose homeostasis. JCI INSIGHT 2021, 6.Abstract
During pregnancy, fetal glucose production is suppressed, with rapid activation immediately postpartum. Fatty acid-binding protein 4 (FABP4) was recently demonstrated as a regulator of hepatic glucose production and systemic metabolism in animal models. Here, we studied the role of FABP4 in regulating neonatal glucose hemostasis. Serum samples were collected from pregnant women with normoglycemia or gestational diabetes at term, from the umbilical circulation, and from the newborns within 6 hours of life. The level of FABP4 was higher in the fetal versus maternal circulation, with a further rise in neonates after birth of approximately 3-fold. Neonatal FABP4 inversely correlated with blood glucose, with an approximately 10-fold increase of FABP4 in hypoglycemic neonates. When studied in mice, blood glucose of 12-hour-old WT, Fabp4(-/+), and Fabp4(-/-) littermate mice was 59 +/- 13 mg/dL, 50 +/- 11 mg/dL, and 43 +/- 11 mg/dL, respectively. Similar to our observations in humans, FABP4 levels in WT mouse neonates were approximately 8-fold higher compared with those in adult mice. RNA sequencing of the neonatal liver suggested altered expression of multiple glucagon-regulated pathways in Fabp4(-/-) mice. Indeed, Fabp4(-/-) liver glycogen was inappropriately intact, despite a marked hypoglycemia, with rapid restoration of normoglycemia upon injection of recombinant FABP4. Our data suggest an important biological role for the adipokine FABP4 in the orchestrated regulation of postnatal glucose metabolism.
Korenfeld, N. ; Finkel, M. ; Buchshtab, N. ; Bar-Shimon, M. ; Charni-Natan, M. ; Goldstein, I. Fasting Hormones Synergistically Induce Amino Acid Catabolism Genes to Promote Gluconeogenesis. CELLULAR AND MOLECULAR GASTROENTEROLOGY AND HEPATOLOGY 2021, 12, 1021-1036.Abstract
BACKGROUND & AIMS: Gluconeogenesis from amino acids (AAs) maintains glucose homeostasis during fasting. Although glucagon is known to regulate AA catabolism, the contribution of other hormones to it and the scope of transcriptional regulation dictating AA catabolism are unknown. We explored the role of the fasting hormones glucagon and glucocorticoids in transcriptional regulation of AA catabolism genes and AA-dependent gluconeogenesis. METHODS: We tested the RNA expression of AA catabolism genes and glucose production in primary mouse hepatocytes treated with fasting hormones (glucagon, corticosterone) and feeding hormones (insulin, fibroblast growth factor 19). We analyzed genomic data of chromatin accessibility and chromatin immunoprecipitation in mice and primary mouse hepatocytes. We performed chromatin immunoprecipitation in livers of fasted mice to show binding of cAMP responsive element binding protein (CREB) and the glucocorticoid receptor (GR). RESULTS: Fasting induced the expression of 31 genes with various roles in AA catabolism. Of them, 15 were synergistically induced by co-treatment of glucagon and corticosterone. Synergistic gene expression relied on the activity of both CREB and GR and was abolished by treatment with either insulin or fibroblast growth factor 19. Enhancers adjacent to synergistically induced genes became more accessible and were bound by CREB and GR on fasting. Akin to the gene expression pattern, gluconeogenesis from AAs was synergistically induced by glucagon and corticosterone in a CREB- and GR-dependent manner. CONCLUSIONS: Transcriptional regulation of AA catabolism genes during fasting is widespread and is driven by glucagon (via CREB) and corticosterone (via GR). Glucose production in hepatocytes is also synergistically augmented, showing that glucagon alone is insufficient in fully activating gluconeogenesis.
Goldstein, I. Chromatin Regulation and Transcription Factor Cooperation in Liver Cells. In LIVER: BIOLOGY AND PATHOBIOLOGY, 6TH EDITION, 6 EDITION; Arias, I. M. ; Alter, H. J. ; Boyer, J. L. ; Cohen, D. E. ; Shafritz, D. A. ; Thorgeirsson, S. S. ; Wolkoff, A. W., Ed. LIVER: BIOLOGY AND PATHOBIOLOGY, 6TH EDITION, 6 EDITION; 2020; pp. 1043-1049.
Goldstein, I. ; Hager, G. L. Dynamic enhancer function in the chromatin context. Wiley Interdiscip Rev Syst Biol Med 2018, 10.Abstract
Enhancers serve as critical regulatory elements in higher eukaryotic cells. The characterization of enhancer function has evolved primarily from genome-wide methodologies, including chromatin immunoprecipitation (ChIP-seq), DNase-I hypersensitivity (DNase-seq), digital genomic footprinting (DGF), and the chromosome conformation capture techniques (3C, 4C, and Hi-C). These population-based assays average signals across millions of cells and lead to enhancer models characterized by static and sequential binding. More recently, fluorescent microscopy techniques, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single molecule tracking (SMT), reveal a highly dynamic binding behavior for these factors in live cells. Furthermore, a refined analysis of genomic footprinting suggests that many transcription factors leave minimal or no footprints in chromatin, even when present and active in a given cell type. In this study, we review the implications of these new approaches for an accurate understanding of enhancer function in real time. In vivo SMT, in particular, has recently evolved as a promising methodology to probe enhancer function in live cells. Integration of findings from the many approaches now employed in the study of enhancer function suggest a highly dynamic view for the action of enhancer activating factors, viewed on a time scale of milliseconds to seconds, rather than minutes to hours. WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Imaging.
Goldstein, I. ; Hager, G. L. The Three Ds of Transcription Activation by Glucagon: Direct, Delayed, and Dynamic. Endocrinology 2018, 159, 206-216.Abstract
Upon lowered blood glucose occurring during fasting, glucagon is secreted from pancreatic islets, exerting various metabolic effects to normalize glucose levels. A considerable portion of these effects is mediated by glucagon-activated transcription factors (TFs) in liver. Glucagon directly activates several TFs via immediate cyclic adenosine monophosphate (cAMP)- and calcium-dependent signaling events. Among these TFs, cAMP response element-binding protein (CREB) is a major factor. CREB recruits histone-modifying enzymes and cooperates with other TFs on the chromatin template to increase the rate of gene transcription. In addition to direct signal transduction, the transcriptional effects of glucagon are also influenced by dynamic TF cross talk. Specifically, assisted loading of one TF by a companion TF leads to increased binding and activity. Lastly, transcriptional regulation by glucagon is also exerted by TF cascades by which a primary TF induces the gene expression of secondary TFs that bring about their activity a few hours after the initial glucagon signal. This mechanism of a delayed response may be instrumental in establishing the temporal organization of the fasting response by which distinct metabolic events separate early from prolonged fasting. In this mini-review, we summarize recent advances and critical discoveries in glucagon-dependent gene regulation with a focus on direct TF activation, dynamic TF cross talk, and TF cascades.
Isaac, R. ; Goldstein, I. ; Furth, N. ; Zilber, N. ; Streim, S. ; Boura-Halfon, S. ; Elhanany, E. ; Rotter, V. ; Oren, M. ; Zick, Y. TM7SF3, a novel p53-regulated homeostatic factor, attenuates cellular stress and the subsequent induction of the unfolded protein response. 2017, 24, 132 - 143. Publisher's VersionAbstract
Earlier reported small interfering RNA (siRNA) high-throughput screens, identified seven-transmembrane superfamily member 3 (TM7SF3) as a novel inhibitor of pancreatic β-cell death. Here we show that TM7SF3 maintains protein homeostasis and promotes cell survival through attenuation of ER stress. Overexpression of TM7SF3 inhibits caspase 3/7 activation. In contrast, siRNA-mediated silencing of TM7SF3 accelerates ER stress and activation of the unfolded protein response (UPR). This involves inhibitory phosphorylation of eukaryotic translation initiation factor 2α activity and increased expression of activating transcription factor-3 (ATF3), ATF4 and C/EBP homologous protein, followed by induction of apoptosis. This process is observed both in human pancreatic islets and in a number of cell lines. Some of the effects of TM7SF3 silencing are evident both under basal conditions, in otherwise untreated cells, as well as under different stress conditions induced by thapsigargin, tunicamycin or a mixture of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta and interferon gamma). Notably, TM7SF3 is a downstream target of p53: activation of p53 by Nutlin increases TM7SF3 expression in a time-dependent manner, although silencing of p53 abrogates this effect. Furthermore, p53 is found in physical association with the TM7SF3 promoter. Interestingly, silencing of TM7SF3 promotes p53 activity, suggesting the existence of a negative-feedback loop, whereby p53 promotes expression of TM7SF3 that acts to restrict p53 activity. Our findings implicate TM7SF3 as a novel p53-regulated pro-survival homeostatic factor that attenuates the development of cellular stress and the subsequent induction of the UPR.
Goldstein, I. ; Baek, S. ; Presman, D. M. ; Paakinaho, V. ; Swinstead, E. E. ; Hager, G. L. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response. Genome Res 2017, 27, 427-439.Abstract
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting.
Baek, S. ; Goldstein, I. ; Hager, G. L. Bivariate Genomic Footprinting Detects Changes in Transcription Factor Activity. Cell Reports 2017, 19, 1710 - 1722. Publisher's VersionAbstract
Summary In response to activating signals, transcription factors (TFs) bind DNA and regulate gene expression. TF binding can be measured by protection of the bound sequence from DNase digestion (i.e., footprint). Here, we report that 80% of TF binding motifs do not show a measurable footprint, partly because of a variable cleavage pattern within the motif sequence. To more faithfully portray the effect of TFs on chromatin, we developed an algorithm that captures two TF-dependent effects on chromatin accessibility: footprinting and motif-flanking accessibility. The algorithm, termed bivariate genomic footprinting (BaGFoot), efficiently detects TF activity. BaGFoot is robust to different accessibility assays (DNase-seq, ATAC-seq), all examined peak-calling programs, and a variety of cut bias correction approaches. BaGFoot reliably predicts TF binding and provides valuable information regarding the TFs affecting chromatin accessibility in various biological systems and following various biological events, including in cases where an absolute footprint cannot be determined.
Goldstein, I. ; Paakinaho, V. ; Baek, S. ; Sung, M. - H. ; Hager, G. L. Synergistic gene expression during the acute phase response is characterized by transcription factor assisted loading. 2017, 8 1849. Publisher's VersionAbstract
The cytokines interleukin 1β and 6 (IL-1β, IL-6) mediate the acute phase response (APR). In liver, they regulate the secretion of acute phase proteins. Using RNA-seq in primary hepatocytes, we show that these cytokines regulate transcription in a bifurcated manner, leading to both synergistic and antagonistic gene expression. By mapping changes in enhancer landscape and transcription factor occupancy (using ChIP-seq), we show that synergistic gene induction is achieved by assisted loading of STAT3 on chromatin by NF-κB. With IL-6 treatment alone, STAT3 does not efficiently bind 20% of its coordinated binding sites. In the presence of IL-1β, NF-κB is activated, binds a subset of enhancers and primes their activity, as evidenced by increasing H3K27ac. This facilitates STAT3 binding and synergistic gene expression. Our findings reveal an enhancer-specific crosstalk whereby NF-κB enables STAT3 binding at some enhancers while perturbing it at others. This model reconciles seemingly contradictory reports of NF-κB-STAT3 crosstalk.
Charni, M. ; Molchadsky, A. ; Goldstein, I. ; Solomon, H. ; Tal, P. ; Goldfinger, N. ; Yang, P. ; Porat, Z. ; Lozano, G. ; Rotter, V. Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation. 2016, 23, 509 - 520. Publisher's VersionAbstract
The tumor-suppressor p53 is a transcription factor that prevents cancer development and is involved in regulation of various physiological processes. This is mediated both by induction of cell cycle arrest and apoptosis and by controlling the expression of a plethora of target genes, including secreted proteins. It has been demonstrated that p53 may exert its effect in non-cell-autonomous manner by modulating the expression of genes that encode for secreted factors. In this study, we utilized our microarray data to identify and characterize novel p53 target genes expressed in human liver cells and associated with steroid hormones processing and transfer. We identified the steroid hormones binding factors, sex hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG) and cytochrome P450 family 21 subfamily A polypeptide 2, as novel p53 target genes. Their expression and secretion was increased following p53 activation in various hepatic cells. We observed that p53 wild-type mice exhibited higher levels of CBG compared with their p53 null counterparts. We demonstrated that the induction of the steroid hormones binding factors can be mediated by binding to specific p53 responsive elements within their promoters. In addition, utilizing conditioned medium experiments we have shown that p53-dependent induction of SHBG secretion from liver cells enhances apoptosis of breast cancer cells. Moreover, depletion of SHBG abolished the induction of breast cancer cells death. The newly identified p53 target genes suggest a novel non-cell-autonomous tumor-suppressive regulation mediated by p53 that is central for maintaining organism homeostasis.
Swinstead, E.  E. ; Miranda, T.  B. ; Paakinaho, V. ; Baek, S. ; Goldstein, I. ; Hawkins, M. ; Karpova, T.  S. ; Ball, D. ; Mazza, D. ; Lavis, L.  D. ; et al. Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions. 2016, 165, 593 - 605. Publisher's VersionAbstract
SummaryThe estrogen receptor (ER), glucocorticoid receptor (GR), and forkhead box protein 1 (FoxA1) are significant factors in breast cancer progression. FoxA1 has been implicated in establishing ER-binding patterns though its unique ability to serve as a pioneer factor. However, the molecular interplay between ER, GR, and FoxA1 requires further investigation. Here we show that ER and GR both have the ability to alter the genomic distribution of the FoxA1 pioneer factor. Single-molecule tracking experiments in live cells reveal a highly dynamic interaction of FoxA1 with chromatin in vivo. Furthermore, the FoxA1 factor is not associated with detectable footprints at its binding sites throughout the genome. These findings support a model wherein interactions between transcription factors and pioneer factors are highly dynamic. Moreover, at a subset of genomic sites, the role of pioneer can be reversed, with the steroid receptors serving to enhance binding of FoxA1.