Yehuda, A. ; Slamti, L. ; Malach, E. ; Lereclus, D. ; Hayouka, Z. .
Elucidating The Hot Spot Residues Of Quorum Sensing Peptidic Autoinducer Papr By Multiple Amino Acid Replacements.
Front Microbiol 2019,
10, 1246.
AbstractThe quorum sensing (QS) system of , an opportunistic human pathogen, utilizes the autoinducing PapR peptide signal that mediates the activation of the pleiotropic virulence regulator PlcR. A set of synthetic 7-mer PapR-derived peptides (PapR; ADLPFEF) have been shown to inhibit efficiently the PlcR regulon activity and the production of virulence factors, reflected by a loss in hemolytic activity without affecting bacterial growth. Interestingly, these first potent synthetic inhibitors involved D-amino acid or alanine replacements of three amino acids; proline, glutamic acid, and phenylalanine of the heptapeptide PapR. To better understand the role of these three positions in PlcR activity, we report herein the second generation design, synthesis, and characterization of PapR-derived combinations, alternate double and triple alanine and D-amino acids replacement at these positions. Our findings generate a new set of non-native PapR-derived peptides that inhibit the PlcR regulon activity and the production of virulence factors. Using the amino acids substitution strategy, we revealed the role of proline and glutamic acid on PlcR regulon activation. Moreover, we demonstrated that the D-Glutamic acid substitution was crucial for the design of stronger PlcR antagonists. These peptides represent potent synthetic inhibitors of QS and constitute new and readily accessible chemical tools for the study of the PlcR system. Our method might be applied to other quorum sensing systems to design new anti-virulence agents.
Amso, Z. ; Hayouka, Z. .
Antimicrobial Random Peptide Cocktails: A New Approach To Fight Pathogenic Bacteria.
Chem Commun (Camb) 2019,
55, 2007-2014.
AbstractAntibiotic resistance in bacteria has become a serious threat to public health, and therefore there is an urgent need to develop new classes of antimicrobial agents. Nowadays, natural antimicrobial peptides (AMPs) and their synthetic derivatives are considered as promising alternatives to traditional antibiotics. The broad molecular diversity of AMPs, in terms of sequences and structures, suggests that their activity does not depend on specific features of amino acid sequence or peptide conformation. We therefore selected two common properties of AMPs, (high percentage of hydrophobic and cationic amino acids), to develop a novel approach to synthesize random antimicrobial peptide mixtures (RPMs). Instead of incorporating a single amino acid at each coupling step, a mixture of hydrophobic and cationic amino acids in a defined proportion is coupled. This results in a mixture that contains up to 2n sequences, where n is the number of the coupling step, of random peptides with a defined composition, stereochemistry, and controlled chain length. We have discovered that RPMs of hydrophobic and cationic α-amino acids, such as phenylalanine and lysine, display strong and broad antimicrobial activity towards Gram-negative, Gram-positive, clinically isolated antibiotic resistant "superbugs", and several plant pathogenic bacteria. This review summarizes our efforts to explore the mode of action of RPMs and their potential as bioactive agents for multiple applications, including the prevention of biofilm formation and degradation of mature biofilm (related to human health), reduction of disease severity in plant bacterial disease models (related to crop protection), and inhibition of bacterial growth in milk (related to food preservation). All our findings illustrate the effectiveness of RPMs and their great potential for various applications.
Stern Bauer, T. ; Menagen, B. ; Avnir, D. ; Hayouka, Z. .
Random Peptide Mixtures Entrapped Within A Copper-Cuprite Matrix: New Antimicrobial Agent Against Methicillin-Resistant Staphylococcus Aureus.
Sci Rep 2019,
9, 11215.
AbstractThe emergence of global antibiotic resistance necessitates the urgent need to develop new and effective antimicrobial agents. Combination of two antimicrobial agents can potentially improve antimicrobial potency and mitigate the development of resistance. Therefore, we have utilized metal molecular doping methodology whereby antimicrobial random peptides mixture (RPMs) are entrapped in a bactericidal copper metal matrix. The copper/RPM composite exhibits greater antimicrobial activity toward methicillin-resistant Staphylococcus aureus (MRSA) than either copper or RPMs alone. Our findings indicate that this bactericidal antimicrobial biomaterial could be utilized to efficiently eradicate antibiotic-resistant pathogenic bacteria for health, agricultural and environmental applications.
Ghate, V. ; Zelinger, E. ; Shoyhet, H. ; Hayouka, Z. .
Inactivation Of Listeria Monocytogenes On Paperboard, A Food Packaging Material, Using 410 Nm Light Emitting Diodes.
Food Control 2019,
96, 281 - 290.
Publisher's VersionAbstractLight emitting diodes of wavelength 410 nm were used to inactivate Listeria monocytogenes stains on paperboard, an increasingly popular food packaging material. The integrity of the cell membranes was examined using differential fluorescent staining. Scanning electron microscopy (SEM) was used to obtain a deeper understanding of L. monocytogenes stain formation on paperboard and the damage caused to the cells by the LEDs. While the planktonic L. monocytogenes population could be completely inactivated following a brief lag phase that lasted about 20 min, the illumination of the sessile population left some persisters despite immediate commencement of the inactivation. Planktonic populations of inocula sized 3, 5 and 7 log CFU/mL were reduced below the detection limit in 54, 80 and 84 min respectively, whereas it took 120 and 390 min to reach constancy in the sessile populations of inocula sized 5 and 7 log CFU/cm2. The number of membrane-damaged cells was seen to increase with the illumination time. SEM images provided evidence of the protection conferred by the stain on the underlying cells. This study demonstrates that blue LEDs have the potential to reduce the risk of L. monocytogenes contamination from paperboard cartons under refrigeration.