check
Publications | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

Publications

2016
Hirsch, N. ; Konstantinov, A. ; Anavi, S. ; Anna Aronis, ; Hagay, Z. ; Madar, Z. ; Tirosh, O. . Prolonged Feeding With Green Tea Polyphenols Exacerbates Cholesterol-Induced Fatty Liver Disease In Mice. Molecular Nutrition & Food ResearchMolecular Nutrition & Food ResearchMol. Nutr. Food Res. 2016, 60, 2542 - 2553. Publisher's VersionAbstract
Scope This study investigated the potential deleterious impact of dietary supplementation with green tea extract (GTE) on the progression of fatty liver disease, in a mouse model of cholesterol-induced steatohepatitis that represents chronic liver injury. Methods and results Male C57BL mice (n = 32, 8-wk-old) were fed for 6 wk with one of the following diets: normal control diet (ND, Con), Con + 1% w/w polyphenols from GTE (Con + GTE); high cholesterol diet, Con + 1% cholesterol + 0.5% cholate w/w (HCD); HCD + 1% green tea polyphenols w/w (HCD + GTE). Hepatic steatosis, oxidative, and inflammatory markers and bile acid synthesis pathways were measured. HCD supplementation resulted in hepatic steatosis and liver damage. In animals supplemented with the HCD + GTE an exacerbated hepatic steatosis, oxidative stress, and inflammatory response were observed compared to HCD supplemented animals. HCD + GTE supplementation elevated blood levels of liver enzymes and serum bile acids compared HCD-treated animals. HCD + GTE supplementation altered bile acid synthesis in the cholesterol clearance pathway, inducing a shift from the classically regulated CYP7A1 pathway to the alternative acidic pathway. Conclusion Prolonged GTE supplementation dramatically increased hepatic oxidative stress, inflammation and liver injury, and altered the bile acid synthesis pathway in mice fed a HCD.
Tal, Y. ; Anavi, S. ; Reisman, M. ; Samach, A. ; Tirosh, O. ; Troen, A. M. . The Neuroprotective Properties Of A Novel Variety Of Passion Fruit. Journal of Functional Foods 2016, 23, 359 - 369. Publisher's VersionAbstract
Passion fruit is a commercially important crop. The neuroprotective activity of fruit extracts from two hybrid lines of antioxidant ester thiol-rich Passiflora edulis Sims, the commercial “Passion Dream” and novel cultivar 428 (“Dena”) line were studied. Crude extracts from line 428 displayed the strongest dose-dependent neuroprotective activity, preventing glutamate induced cell-death, mitochondrial depolarization and glutathione depletion, when added to the medium of cultured HT4 neurons (p < 0.05). Supplementing diet of mice with the 428 fruit-extract improved survival of dopaminergic neurons by 60% in mice injected with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTPT) compared to control-fed MPTP-injected mice (p < 0.05). The neuroprotection conferred by passion fruit extracts in vivo and in vitro shows promise for further research into their bioactive potential for medical exploitation.