check
Publications | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

Publications

2017
Dubovski, N. ; Ert, E. ; Niv, M. Y. . Bitter Mouth-Rinse Affects Emotions. Food Quality and Preference 2017, 60, 154 - 164. Publisher's VersionAbstract
The sense of taste enables evaluation of food and is an important regulator of food consumption. In general, sweet is an attractive taste modality that leads to ingestion of nutritive food, while sour and bitter are aversive taste modalities that lead to avoidance of spoiled and toxic food. Recent studies suggest inter-connections between taste, emotion and cognition. Here we test the potential effects of two prototypical taste modalities, bitter and sweet, on emotions and on generalized avoidance behaviors, such as risk aversion and mistrust. Three experiments included over 250 participants who tasted, without swallowing, one of the following stimuli: water control, quinine solution, sucrose solution, quinine-sucrose mixture solution, or propylthiouracil (PROP) solution. The participants had to identify the taste, rank its intensity, perform seemingly unrelated behavioral tasks, and fill a PANAS mood questionnaire. Our results indicate that oral exposure to bitter compounds negatively correlates with mood scores; that the effect depends on perceiving the solution as bitter; that bitter mouth rinse can lower PANAS mood score and that there is a potential asymmetry in the effects of bitter and sweet taste modalities on mood.
Dagan-Wiener, A. ; Nissim, I. ; Ben Abu, N. ; Borgonovo, G. ; Bassoli, A. ; Niv, M. Y. . Bitter Or Not? Bitterpredict, A Tool For Predicting Taste From Chemical Structure. 2017, 7, 12074. Publisher's VersionAbstract
Bitter taste is an innately aversive taste modality that is considered to protect animals from consuming toxic compounds. Yet, bitterness is not always noxious and some bitter compounds have beneficial effects on health. Hundreds of bitter compounds were reported (and are accessible via the BitterDB http://bitterdb.agri.huji.ac.il/dbbitter.php), but numerous additional bitter molecules are still unknown. The dramatic chemical diversity of bitterants makes bitterness prediction a difficult task. Here we present a machine learning classifier, BitterPredict, which predicts whether a compound is bitter or not, based on its chemical structure. BitterDB was used as the positive set, and non-bitter molecules were gathered from literature to create the negative set. Adaptive Boosting (AdaBoost), based on decision trees machine-learning algorithm was applied to molecules that were represented using physicochemical and ADME/Tox descriptors. BitterPredict correctly classifies over 80% of the compounds in the hold-out test set, and 70–90% of the compounds in three independent external sets and in sensory test validation, providing a quick and reliable tool for classifying large sets of compounds into bitter and non-bitter groups. BitterPredict suggests that about 40% of random molecules, and a large portion (66%) of clinical and experimental drugs, and of natural products (77%) are bitter.
Di Pizio, A. ; Kruetzfeldt, L. - M. ; Cheled-Shoval, S. ; Meyerhof, W. ; Behrens, M. ; Niv, M. Y. . Ligand Binding Modes From Low Resolution Gpcr Models And Mutagenesis: Chicken Bitter Taste Receptor As A Test-Case. 2017, 7, 8223. Publisher's VersionAbstract
Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.
Nissim, I. ; Dagan-Wiener, A. ; Niv, M. Y. . The Taste Of Toxicity: A Quantitative Analysis Of Bitter And Toxic Molecules. IUBMB Life 2017, 69, 938-946. Publisher's VersionAbstract
Abstract The role of bitter taste—one of the few basic taste modalities—is commonly assumed to signal toxicity and alert animals against consuming harmful compounds. However, it is known that some toxic compounds are not bitter and that many bitter compounds have negligible toxicity while having important health benefits. Here we apply a quantitative analysis of the chemical space to shed light on the bitterness-toxicity relationship. Using the BitterDB dataset of bitter molecules, The BitterPredict prediction tool, and datasets of toxic compounds, we quantify the identity and similarity between bitter and toxic compounds. About 60% of the bitter compounds have documented toxicity and only 56% of the toxic compounds are known or predicted to be bitter. The LD50 value distributions suggest that most of the bitter compounds are not very toxic, but there is a somewhat higher chance of toxicity for known bitter compounds compared to known nonbitter ones. Flavonoids and alpha acids are more common in the bitter dataset compared with the toxic dataset. In contrast, alkaloids are more common in the toxic datasets compared to the bitter dataset. Interestingly, no trend linking LD50 values with the number of activated bitter taste receptors (TAS2Rs) subtypes is apparent in the currently available data. This is in accord with the newly discovered expression of TAS2Rs in several extra-oral tissues, in which they might be activated by yet unknown endogenous ligands and play non-gustatory physiological roles. These results suggest that bitter taste is not a very reliable marker for toxicity, and is likely to have other physiological roles. © 2017 IUBMB Life, 69(12):938–946, 2017
Wu, C. ; Du, Y. - W. ; Huang, L. ; Ben-Shoshan Galeczki, Y. ; Dagan-Wiener, A. ; Naim, M. ; Niv, M. Y. ; Wang, P. . Biomimetic Sensors For The Senses: Towards Better Understanding Of Taste And Odor Sensation. Sensors (Basel) 2017, 17.Abstract
Taste and smell are very important chemical senses that provide indispensable information on food quality, potential mates and potential danger. In recent decades, much progress has been achieved regarding the underlying molecular and cellular mechanisms of taste and odor senses. Recently, biosensors have been developed for detecting odorants and tastants as well as for studying ligand-receptor interactions. This review summarizes the currently available biosensing approaches, which can be classified into two main categories: in vitro and in vivo approaches. The former is based on utilizing biological components such as taste and olfactory tissues, cells and receptors, as sensitive elements. The latter is dependent on signals recorded from animals' signaling pathways using implanted microelectrodes into living animals. Advantages and disadvantages of these two approaches, as well as differences in terms of sensing principles and applications are highlighted. The main current challenges, future trends and prospects of research in biomimetic taste and odor sensors are discussed.
Kalish-Achrai, N. ; Monsonego-Ornan, E. ; Shahar, R. . Structure, Composition, Mechanics And Growth Of Spines Of The Dorsal Fin Of Blue Tilapia Oreochromis Aureus And Common Carp Cyprinus Carpio. Journal of Fish Biology 2017, 90, 2073-2096. Publisher's VersionAbstract
The structural, compositional and mechanical properties of the spines of the dorsal fin in mature anosteocytic blue tilapia Oreochromis aureus and osteocytic common carp Cyprinus carpio are described, as well as their temporal growth pattern and regenerative capacities. The three-dimensional architecture of both spines, from macro to sub-micron levels, is shown to be axially oriented and therefore highly anisotropic and the spines of both species are able to regenerate after partial amputation.
Barazani, O. ; Waitz, Y. ; Tugendhaft, Y. ; Dorman, M. ; Dag, A. ; Hamidat, M. ; Hijawi, T. ; Kerem, Z. ; Westberg, E. ; Kadereit, J. W. . Testing The Potential Significance Of Different Scion/Rootstock Genotype Combinations On The Ecology Of Old Cultivated Olive Trees In The Southeast Mediterranean Area. 2017, 17, 3. Publisher's VersionAbstract
A previous multi-locus lineage (MLL) analysis of SSR-microsatellite data of old olive trees in the southeast Mediterranean area had shown the predominance of the Souri cultivar (MLL1) among grafted trees. The MLL analysis had also identified an MLL (MLL7) that was more common among rootstocks than other MLLs. We here present a comparison of the MLL combinations MLL1 (scion)/MLL7 (rootstock) and MLL1/MLL1 in order to investigate the possible influence of rootstock on scion phenotype.
Elyasiyan, U. ; Nudel, A. ; Skalka, N. ; Rozenberg, K. ; Drori, E. ; Oppenheimer, R. ; Kerem, Z. ; Rosenzweig, T. . Anti-Diabetic Activity Of Aerial Parts Of Sarcopoterium Spinosum. 2017, 17, 356. Publisher's VersionAbstract
Sarcopoterium spinosum (S. spinosum) is used by Bedouin medicinal practitioners for the treatment of diabetes. While the anti-diabetic activity of S. spinosum root extract was validated in previous studies, the activity of aerial parts of the same plants has not been elucidated yet. The aim of this study was to clarify the glucose lowering properties of the aerial parts of the shrub.
Ehrlich, Y. ; Regev, L. ; Kerem, Z. ; Boaretto, E. . Radiocarbon Dating Of An Olive Tree Cross-Section: New Insights On Growth Patterns And Implications For Age Estimation Of Olive Trees. Frontiers in Plant Science 2017, 8, 1918. Publisher's VersionAbstract
The age of living massive olive trees is often assumed to be between hundreds and even thousands of years. These estimations are usually based on the girth of the trunk and an extrapolation based on a theoretical annual growth rate. It is difficult to objectively verify these claims, as a monumental tree may not be cut down for analysis of its cross-section. In addition, the inner and oldest part of the trunk in olive trees usually rots, precluding the possibility of carting out radiocarbon analysis of material from the first years of life of the tree. In this work we present a cross-section of an olive tree, previously estimated to be hundreds of years old, which was cut down post-mortem in 2013. The cross-section was radiocarbon dated at numerous points following the natural growth pattern, which was made possible to observe by viewing the entire cross-section. Annual growth rate values were calculated and compared between different radii. The cross-section also revealed a nearly independent segment of growth, which would clearly offset any estimations based solely on girth calculations. Multiple piths were identified, indicating the beginning of branching within the trunk. Different radii were found to have comparable growth rates, resulting in similar estimates dating the piths to the 19th century. The estimated age of the piths represent a terminus ante quem for the age of the tree, as these are piths of separate branches. However, the tree is likely not many years older than the dated piths, and certainly not centuries older. The oldest radiocarbon-datable material in this cross-section was less than 200 years old, which is in agreement with most other radiocarbon dates of internal wood from living olive trees, rarely older than 300 years.
Hayouka, Z. ; Bella, A. ; Stern, T. ; Ray, S. ; Jiang, H. ; Grovenor, C. R. M. ; Ryadnov, M. G. . Binary Encoding Of Random Peptide Sequences For Selective And Differential Antimicrobial Mechanisms. Angewandte Chemie International Edition 2017, 56, 8099-8103. Publisher's VersionAbstract
Abstract Binary encoding of peptide sequences into differential antimicrobial mechanisms is reported. Such sequences are random in composition, but controllable in chain length, are assembled from the same two amino acids, but differ in the stereochemistry of one. Regardless of chirality, the sequences lyse bacteria including the “superbugs” methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Sequences with the same chirality, so-called homochiral sequences, assemble into antimicrobial pores and form contiguous helices that are biologically promiscuous and hemolytic. By contrast, heterochiral sequences that lack such persistence selectively attack bacterial membranes without oligomerizing into visible pores. These results offer a mechanistic rationale for designing membrane-selective and sequence-independent antimicrobials.
Isaac, R. ; Goldstein, I. ; Furth, N. ; Zilber, N. ; Streim, S. ; Boura-Halfon, S. ; Elhanany, E. ; Rotter, V. ; Oren, M. ; Zick, Y. . Tm7Sf3, A Novel P53-Regulated Homeostatic Factor, Attenuates Cellular Stress And The Subsequent Induction Of The Unfolded Protein Response. 2017, 24, 132 - 143. Publisher's VersionAbstract
Earlier reported small interfering RNA (siRNA) high-throughput screens, identified seven-transmembrane superfamily member 3 (TM7SF3) as a novel inhibitor of pancreatic β-cell death. Here we show that TM7SF3 maintains protein homeostasis and promotes cell survival through attenuation of ER stress. Overexpression of TM7SF3 inhibits caspase 3/7 activation. In contrast, siRNA-mediated silencing of TM7SF3 accelerates ER stress and activation of the unfolded protein response (UPR). This involves inhibitory phosphorylation of eukaryotic translation initiation factor 2α activity and increased expression of activating transcription factor-3 (ATF3), ATF4 and C/EBP homologous protein, followed by induction of apoptosis. This process is observed both in human pancreatic islets and in a number of cell lines. Some of the effects of TM7SF3 silencing are evident both under basal conditions, in otherwise untreated cells, as well as under different stress conditions induced by thapsigargin, tunicamycin or a mixture of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1 beta and interferon gamma). Notably, TM7SF3 is a downstream target of p53: activation of p53 by Nutlin increases TM7SF3 expression in a time-dependent manner, although silencing of p53 abrogates this effect. Furthermore, p53 is found in physical association with the TM7SF3 promoter. Interestingly, silencing of TM7SF3 promotes p53 activity, suggesting the existence of a negative-feedback loop, whereby p53 promotes expression of TM7SF3 that acts to restrict p53 activity. Our findings implicate TM7SF3 as a novel p53-regulated pro-survival homeostatic factor that attenuates the development of cellular stress and the subsequent induction of the UPR.
Goldstein, I. ; Baek, S. ; Presman, D. M. ; Paakinaho, V. ; Swinstead, E. E. ; Hager, G. L. . Transcription Factor Assisted Loading And Enhancer Dynamics Dictate The Hepatic Fasting Response. Genome Res 2017, 27, 427-439.Abstract
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting.
Baek, S. ; Goldstein, I. ; Hager, G. L. . Bivariate Genomic Footprinting Detects Changes In Transcription Factor Activity. Cell Reports 2017, 19, 1710 - 1722. Publisher's VersionAbstract
Summary In response to activating signals, transcription factors (TFs) bind DNA and regulate gene expression. TF binding can be measured by protection of the bound sequence from DNase digestion (i.e., footprint). Here, we report that 80% of TF binding motifs do not show a measurable footprint, partly because of a variable cleavage pattern within the motif sequence. To more faithfully portray the effect of TFs on chromatin, we developed an algorithm that captures two TF-dependent effects on chromatin accessibility: footprinting and motif-flanking accessibility. The algorithm, termed bivariate genomic footprinting (BaGFoot), efficiently detects TF activity. BaGFoot is robust to different accessibility assays (DNase-seq, ATAC-seq), all examined peak-calling programs, and a variety of cut bias correction approaches. BaGFoot reliably predicts TF binding and provides valuable information regarding the TFs affecting chromatin accessibility in various biological systems and following various biological events, including in cases where an absolute footprint cannot be determined.
Goldstein, I. ; Paakinaho, V. ; Baek, S. ; Sung, M. - H. ; Hager, G. L. . Synergistic Gene Expression During The Acute Phase Response Is Characterized By Transcription Factor Assisted Loading. 2017, 8, 1849. Publisher's VersionAbstract
The cytokines interleukin 1β and 6 (IL-1β, IL-6) mediate the acute phase response (APR). In liver, they regulate the secretion of acute phase proteins. Using RNA-seq in primary hepatocytes, we show that these cytokines regulate transcription in a bifurcated manner, leading to both synergistic and antagonistic gene expression. By mapping changes in enhancer landscape and transcription factor occupancy (using ChIP-seq), we show that synergistic gene induction is achieved by assisted loading of STAT3 on chromatin by NF-κB. With IL-6 treatment alone, STAT3 does not efficiently bind 20% of its coordinated binding sites. In the presence of IL-1β, NF-κB is activated, binds a subset of enhancers and primes their activity, as evidenced by increasing H3K27ac. This facilitates STAT3 binding and synergistic gene expression. Our findings reveal an enhancer-specific crosstalk whereby NF-κB enables STAT3 binding at some enhancers while perturbing it at others. This model reconciles seemingly contradictory reports of NF-κB-STAT3 crosstalk.
Mangiagalli, M. ; Bar-Dolev, M. ; Tedesco, P. ; Natalello, A. ; Kaleda, A. ; Brocca, S. ; de Pascale, D. ; Pucciarelli, S. ; Miceli, C. ; Braslavsky, I. ; et al. Cryo-Protective Effect Of An Ice-Binding Protein Derived From Antarctic Bacteria. The FEBS Journal 2017, 284, 163-177. Publisher's VersionAbstract
Cold environments are populated by organisms able to contravene deleterious effects of low temperature by diverse adaptive strategies, including the production of ice binding proteins (IBPs) that inhibit the growth of ice crystals inside and outside cells. We describe the properties of such a protein (EfcIBP) identified in the metagenome of an Antarctic biological consortium composed of the ciliate Euplotes focardii and psychrophilic non-cultured bacteria. Recombinant EfcIBP can resist freezing without any conformational damage and is moderately heat stable, with a midpoint temperature of 66.4 °C. Tested for its effects on ice, EfcIBP shows an unusual combination of properties not reported in other bacterial IBPs. First, it is one of the best-performing IBPs described to date in the inhibition of ice recrystallization, with effective concentrations in the nanomolar range. Moreover, EfcIBP has thermal hysteresis activity (0.53 °C at 50 μm) and it can stop a crystal from growing when held at a constant temperature within the thermal hysteresis gap. EfcIBP protects purified proteins and bacterial cells from freezing damage when exposed to challenging temperatures. EfcIBP also possesses a potential N-terminal signal sequence for protein transport and a DUF3494 domain that is common to secreted IBPs. These features lead us to hypothesize that the protein is either anchored at the outer cell surface or concentrated around cells to provide survival advantage to the whole cell consortium.
Bar Dolev, M. ; Braslavsky, I. . Ice-Binding Proteins—Not Only For Ice Growth Control. Temperature 2017, 4, 112-113. Publisher's Version
Guo, S. ; Stevens, C. A. ; Vance, T. D. R. ; Olijve, L. L. C. ; Graham, L. A. ; Campbell, R. L. ; Yazdi, S. R. ; Escobedo, C. ; Bar-Dolev, M. ; Yashunsky, V. ; et al. Structure Of A 1.5-Mda Adhesin That Binds Its Antarctic Bacterium To Diatoms And Ice. Science Advances 2017, 3. Publisher's VersionAbstract
Bacterial adhesins are modular cell-surface proteins that mediate adherence to other cells, surfaces, and ligands. The Antarctic bacterium Marinomonas primoryensis uses a 1.5-MDa adhesin comprising over 130 domains to position it on ice at the top of the water column for better access to oxygen and nutrients. We have reconstructed this 0.6-μm-long adhesin using a “dissect and build” structural biology approach and have established complementary roles for its five distinct regions. Domains in region I (RI) tether the adhesin to the type I secretion machinery in the periplasm of the bacterium and pass it through the outer membrane. RII comprises  120 identical immunoglobulin-like β-sandwich domains that rigidify on binding Ca2+ to project the adhesion regions RIII and RIV into the medium. RIII contains ligand-binding domains that join diatoms and bacteria together in a mixed-species community on the underside of sea ice where incident light is maximal. RIV is the ice-binding domain, and the terminal RV domain contains several “repeats-in-toxin” motifs and a noncleavable signal sequence that target proteins for export via the type I secretion system. Similar structural architecture is present in the adhesins of many pathogenic bacteria and provides a guide to finding and blocking binding domains to weaken infectivity.
Dengjel, J. ; Abeliovich, H. . Roles Of Mitophagy In Cellular Physiology And Development. 2017, 367, 95 - 109. Publisher's VersionAbstract
The autophagic degradation of mitochondria, or mitophagy, has been shown to occur in eukaryotic cells under various physiological conditions. Broadly, these fall into two categories: quality-control related mitophagy and developmentally induced mitophagy. Quality-control related mitophagy, which is the lysosomal/vacuolar degradation of malfunctioning or superfluous mitochondria, is an important housekeeping function in respiring eukaryotic cells. It plays an essential role in physiological homeostasis and its deregulation has been linked to the progression of late-onset diseases. On the other hand, developmental processes such as reticulocyte maturation have also been shown to involve mitophagy. Importantly, there are clear differences between these processes. Unlike our knowledge of the more general degradation of soluble cytosolic content during starvation-induced macroautophagy, the mechanisms involved in the selective autophagic degradation of mitochondria have only recently begun to receive significant attention. Here, we review the current literature on these topics and proceed to provide specific examples from yeast and mammalian systems. Finally, we cover experimental approaches, with a focus on proteomic methods dedicated to the study of mitophagy in different systems.
Kolitsida, P. ; Abeliovich, H. . Selective Emodin Toxicity In Cancer Cells. Oncotarget 2017, 8, 36932-36933.
Shen, Z. ; Li, Y. ; Gasparski, A. N. ; Abeliovich, H. ; Greenberg, M. L. . Cardiolipin Regulates Mitophagy Through The Protein Kinase C Pathway. Journal of Biological Chemistry 2017, 292, 2916-2923. Publisher's VersionAbstract
Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, is important for cardiovascular health, and perturbation of CL metabolism is implicated in cardiovascular disease. Although the role of CL in mitochondrial function, biogenesis, and genome stability has been studied, recent findings indicate that it is essential for functions apart from mitochondrial bioenergetics. In this study, we report that mitophagy is perturbed in CL-deficient yeast cells. Mutants of autophagy/mitophagy genes ATG8, ATG18, and ATG32 synthetically interact with CL synthase mutant crd1Δ. CL-deficient cells exhibited decreased GFP-tagged mitochondrial proteins inside the vacuole and decreased free GFP, consistent with decreased mitophagy. Both PKC and high osmolarity glycerol (HOG) MAPK pathways were shown previously to be required for mitophagy. Activation of both MAPKs was defective in CL-deficient cells. Deletion of HOG pathway genes SHO1, SSK1, STE50, and HOG1 exacerbated crd1Δ growth. 1 m sorbitol and 0.2 m NaCl, which induce the HOG pathway, rescued growth of the mutant. Activation of the MAPK Slt2p was defective in crd1Δ cells, and up-regulation of the PKC pathway by expression of the PKC1R398P gene, which encodes constitutively activated Pkc1p, rescued crd1Δ growth and mitophagy defects. These findings indicate that loss of CL impairs MAPK pathway activation, and decreased activation of the PKC pathway leads to defective mitophagy.