Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

Biofilm formation onto starch fibres byBacillus subtilisgoverns its successful adaptation to chickpea milk

Citation:

Rajasekharan, S. K. ; Paz-Aviram, T. ; Galili, S. ; Berkovich, Z. ; Reifen, R. ; Shemesh, M. . Biofilm Formation Onto Starch Fibres Bybacillus Subtilisgoverns Its Successful Adaptation To Chickpea Milk. MICROBIAL BIOTECHNOLOGY 2021, 14, 1839-1846.

Date Published:

JUL

Abstract:

Beneficial biofilms may confer effective adaptation to food matrices that assist bacteria in enduring hostile environmental conditions. The matrices, for instance, dietary fibres of various food products, might serve as a natural scaffold for bacterial cells to adhere and grow as biofilms. Here, we report on a unique interaction ofBacillus subtiliscells with the resistant starch fibresof chickpea milk (CPM), herein CPM fibres, along with the production of a reddish-pink pigment. Genetic analysis identified the pigment as pulcherrimin, and also revealed the involvement of Spo0A/SinI pathway in modulating the observed phenotypes. Besides, through successful colonization of the CPM fibres, the wild-type cells ofB. subtilisdisplayed enhanced survivability and resilience to environmental stress, such as heat andin vitrogastrointestinal treatments. In total, we infer that the biofilm formation on CPM fibres is an adaptation response ofB. subtilisfor strategic survival.