check
A bioinspired in vitro bioelectronic tongue with human T2R38 receptor for high-specificity detection of N-C=S-containing compounds | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

A bioinspired in vitro bioelectronic tongue with human T2R38 receptor for high-specificity detection of N-C=S-containing compounds

Citation:

Qin, C. ; Qin, Z. ; Zhao, D. ; Pan, Y. ; Zhuang, L. ; Wan, H. ; Di Pizio, A. ; Malach, E. ; Niv, M. Y. ; Huang, L. ; et al. A Bioinspired In Vitro Bioelectronic Tongue With Human T2R38 Receptor For High-Specificity Detection Of N-C=S-Containing Compounds. Talanta 2019, 199, 131-139.

Date Published:

2019 Jul 01

Abstract:

Detection and identification of bitter compounds draw great attention in pharmaceutical and food industry. Several well-known agonists of specific bitter taste receptors have been found to exhibit anti-cancer effects. For example, N-C=S-containing compounds, such as allyl-isothiocyanates, have shown cancer chemo-preventive effects. It is worth noting that human T2R38 receptor is specific for compounds containing N-C=S moiety. Here, a bioinspired cell-based bioelctronic tongue (BioET) is developed for the high-specificity isothiocyanate-induced bitter detection, utilizing human Caco-2 cells as a primary sensing element and interdigitated impedance sensor as a secondary transducer. As an intestinal carcinoma cell line, Caco-2 endogenously expresses human bitter receptor T2R38, and the activation of T2R38 induces the changes of cellular morphology which can be detected by electric cell-substrate impedance sensing (ECIS). After configuration and optimization of parameters including timing of compound administration and cell density, quantitative bitter evaluation models were built for two well-known bitter compounds, phenylthiocarbamide (PTC) and propylthiouracil (PROP). The bitter specific detection of this BioET is inhibited by probenecid and U-73122, and is not elicited by other taste modalities or bitter ligands that do not activate T2R38. Moreover, by combining different computational tools, we designed a ligand-based virtual screening (LBVS) protocol to select ligands that are likely to activate T2R38 receptor. Three computationally predicted agonists of T2R38 were selected using the LBVS protocol, and the BioET presented response to the predicted agonists, validating the capability of the LBVS protocol. This study suggests this unique cell-based BioET paves a general and promising way to specifically detect N-C=S-containing compounds that can be used for pharmaceutical study and drug development.

Last updated on 05/19/2020