check
BitterDB: taste ligands and receptors database in 2019 | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

BitterDB: taste ligands and receptors database in 2019

Citation:

Dagan-Wiener, A. ; Di Pizio, A. ; Nissim, I. ; Bahia, M. S. ; Dubovski, N. ; Margulis, E. ; Niv, M. Y. . Bitterdb: Taste Ligands And Receptors Database In 2019. Nucleic Acids Researchnar 2018, 47, D1179 - D1185.

Date Published:

2018/10/24/

Abstract:

BitterDB (http://bitterdb.agri.huji.ac.il) was introduced in 2012 as a central resource for information on bitter-tasting molecules and their receptors. The information in BitterDB is frequently used for choosing suitable ligands for experimental studies, for developing bitterness predictors, for analysis of receptors promiscuity and more. Here, we describe a major upgrade of the database, including significant increase in content as well as new features. BitterDB now holds over 1000 bitter molecules, up from the initial 550. When available, quantitative sensory data on bitterness intensity as well as toxicity information were added. For 270 molecules, at least one associated bitter taste receptor (T2R) is reported. The overall number of ligand–T2R associations is now close to 800. BitterDB was extended to several species: in addition to human, it now holds information on mouse, cat and chicken T2Rs, and the compounds that activate them. BitterDB now provides a unique platform for structure-based studies with high-quality homology models, known ligands, and for the human receptors also data from mutagenesis experiments, information on frequently occurring single nucleotide polymorphisms and links to expression levels in different tissues.

Publisher's Version

Last updated on 12/18/2019