check
On Hill coefficients and subunit interaction energies | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

On Hill coefficients and subunit interaction energies

Citation:

Abeliovich, H. . On Hill Coefficients And Subunit Interaction Energies. 2016, 73, 1399 - 1411.

Date Published:

2016

Abstract:

The study of cooperative ligand binding to multimeric proteins aims to explain complex cooperative binding phenomena using concepts derived from ideal binding isotherms. The purpose of such efforts is the dissection of the cooperative binding isotherm into its interacting components, a result with a clear mechanistic value. Historically, cooperative binding is usually quantified using the Hill coefficient, $$\hbox {n}_\mathrm{H}$$nH, defined as the slope of the Hill plot at 50 % saturation. It was previously shown that the slope of the Hill plot throughout the titration is equal to the ratio of the binding variance in the system under study, to the binding variance of a reference non-interacting system. In the present contribution, this leads to a broader approach towards quantifying cooperativity, which empirically links cooperativity to the ensemble average of the subunit interaction energy. The resulting equations can be used to derive average differential subunit interaction energies directly from experimental binding isotherms. Combined with recent experimental advances in assessing binding distributions in multimeric proteins, these equations can also be used to calculate individual subunit interaction energies for specific n-ligated protein species.

Website