check
Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii

Citation:

Vetvicka, V. ; Gover, O. ; Karpovsky, M. ; Hayby, H. ; Danay, O. ; Ezov, N. ; Hadar, Y. ; Schwartz, B. . Immune-Modulating Activities Of Glucans Extracted From Pleurotus Ostreatus And Pleurotus Eryngii. Journal of Functional Foods 2019, 54, 81-91.

Abstract:

We compared the immune-modulating activity of glucans extracted from P. ostreatus and P. eryngii on phagocytosis of peripheral blood neutrophils, and superoxide release from HL-60 cells. The results suggest that the anti-inflammatory properties of these glucans are partially mediated through modulation of neutrophil effector functions (P. eryngii was more effective). Additionally, both glucans dose-dependently competed for the anti-Dectin-1 and anti-CR3 antibody binding. We then tested the putative anti-inflammatory effects of the extracted glucans in inflammatory bowel disease (IBD) using the dextran sulfate sodium (DSS)–induced model in mice. The clinical symptoms of IBD were efficiently relieved by the treatment with two different doses of the glucan from both fungi. Glucan fractions, from either P. ostreatus or P. eryngii, markedly prevented TNF-α mediated inflammation in the DSS–induced inflamed intestine. These results suggest that there are variations in glucan preparations from different fungi in their anti-inflammatory ability. © 2018 Elsevier Ltd

Website