Publications by year


Publications by Authors

Recent Publications


Contact Us

Head of Institute: Prof. Oren Tirosh

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address:

Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity


Hutchings, C. ; Rajasekharan, S. K. ; Reifen, R. ; Shemesh, M. Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity. FOODS 2020, 9.

Date Published:



Dairy products are a sector heavily impacted by food loss, often due to bacterial contaminations. A major source of contamination is associated with the formation of biofilms by bacterial species adopted to proliferate in milk production environment and onto the surfaces of milk processing equipment. Bacterial cells within the biofilm are characterized by increased resistance to unfavorable environmental conditions and antimicrobial agents. Members of theBacillusgenus are the most commonly found spoilage microorganisms in the dairy environment. It appears that physiological behavior of these species is somehow depended on the availability of bivalent cations in the environment. One of the important cations that may affect the bacterial physiology as well as survivability are Zn(2+)ions. Thus, the aim of this study was to examine the antimicrobial effect of Zn(2+)ions, intending to elucidate the potential of a zinc-based antibacterial treatment suitable for the dairy industry. The antimicrobial effect of different doses of ZnCl(2)was assessed microscopically. In addition, expression of biofilm related genes was evaluated using RT-PCR. Analysis of survival rates following heat treatment was conducted in order to exemplify a possible applicative use of Zn(2+)ions. Addition of zinc efficiently inhibited biofilm formation byB. subtilisand further disrupted the biofilm bundles. Expression of matrix related genes was found to be notably downregulated. Microscopic evaluation showed that cell elongation was withheld when cells were grown in the presence of zinc. Finally,B. cereusandB. subtiliscells were more susceptible to heat treatment after being exposed to Zn(2+)ions. It is believed that an anti-biofilm activity, expressed in downregulation of genes involved in construction of the extracellular matrix, would account for the higher sensitivity of bacteria during heat pasteurization. Consequently, we suggest that Zn(2+)ions can be of used as an effective antimicrobial treatment in various applications in the dairy industry, targeting both biofilms and vegetative bacterial cells.