check
Rapid Detection and Quantification of Patulin and Citrinin Contamination in Fruits | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

Rapid Detection and Quantification of Patulin and Citrinin Contamination in Fruits

Citation:

Sadhasivam, S. ; Barda, O. ; Zakin, V. ; Reifen, R. ; Sionov, E. . Rapid Detection And Quantification Of Patulin And Citrinin Contamination In Fruits. MOLECULES 2021, 26.

Date Published:

AUG

Abstract:

Patulin (PAT) and citrinin (CTN) are the most common mycotoxins produced by Penicillium and Aspergillus species and are often associated with fruits and fruit by-products. Hence, simple and reliable methods for monitoring these toxins in foodstuffs are required for regular quality assessment. In this study, we aimed to establish a cost-effective method for detection and quantification of PAT and CTN in pome fruits, such as apples and pears, using high-performance liquid chromatography (HPLC) coupled with spectroscopic detectors without the need for any clean-up steps. The method showed good performance in the analysis of these mycotoxins in apple and pear fruit samples with recovery ranges of 55-97% for PAT and 84-101% for CTN, respectively. The limits of detection (LOD) of PAT and CTN in fruits were 0.006 mu g/g and 0.001 mu g/g, while their limits of quantification (LOQ) were 0.018 mu g/g and 0.003 mu g/g, respectively. The present findings indicate that the newly developed HPLC method provides rapid and accurate detection of PAT and CTN in fruits.