Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

S-Nitroso-N-acetylcysteine Generates Less Carcinogenic N-Nitrosamines in Meat Products than Nitrite

Citation:

Shpaizer, A. ; Nussinovitch, A. ; Kanner, J. ; Tirosh, O. . S-Nitroso-N-Acetylcysteine Generates Less Carcinogenic N-Nitrosamines In Meat Products Than Nitrite. J Agric Food Chem 2018, 66, 11459-11467.

Date Published:

2018 Oct 31

Abstract:

Nitrite reacts with secondary amines to form N-nitrosamines (N-NA), which lead to gastrointestinal cancers. The aim of this study was to compare nitrite with S-nitrosocysteine (Cys-SNO) and S-nitroso-N-acetylcysteine (NAC-SNO) with respect to N-NA formation, which was evaluated by determining the conversion of N-methylaniline to N-nitrosomethylaniline. Under neutral and acidic pH conditions, N-NA formation rate was nitrite > Cys-SNO > NAC-SNO. In the presence of copper or nucleophiles, NAC-SNO generated much less N-NA than Cys-SNO. Nitrite and Cys-SNO produced higher amounts of N-NA in the presence of oxygen, whereas NAC-SNO was almost oxygen insensitive. In meat in the stomach medium, NAC-SNO produced much lower amounts of N-NA than other additives. In heated meat, Cys-SNO and NAC-SNO generated the nitrosyl-hemochrome pink pigment, better than nitrite. In conclusion, NAC-SNO was much less reactive for N-NA formation than nitrite and Cys-SNO in conditions relevant to meat production and stomach digestion.

Last updated on 12/31/2019