Publications by year

<embed>

Publications by Authors

Recent Publications

More<embed>

Contact Us

Head of Institute: Prof. Oren Tirosh

Administrative manager: Ms. Yael Fruchter

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
P.O.Box 12, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: yaelf@savion.huji.ac.il

Temperature Effect on Polymerase Fidelity

Citation:

Xue, Y. ; Braslavsky, I. ; Quake, S. R. Temperature Effect on Polymerase Fidelity. Journal of Biological ChemistryJournal of Biological Chemistry 2021.

Abstract:

The discovery of extremophiles helped enable the development of groundbreaking technology such as polymerase chain reaction. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is under-explored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not reaction temperature, thus suggesting that reaction temperature increases global error rate of polymerases independent of sequence context. Intriguingly, we also found that the DNA polymerase I of a psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19oC which is well below the freezing temperature of water. Our results provide a useful reference for how reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.The discovery of extremophiles helped enable the development of groundbreaking technology such as polymerase chain reaction. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is under-explored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not reaction temperature, thus suggesting that reaction temperature increases global error rate of polymerases independent of sequence context. Intriguingly, we also found that the DNA polymerase I of a psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19oC which is well below the freezing temperature of water. Our results provide a useful reference for how reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.

Notes:

doi: 10.1016/j.jbc.2021.101270

Publisher's Version

Last updated on 10/24/2021