check
Publications | Biochemistry, Food Science and Nutrition

Publications by year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

More<embed>
Copy and paste this code to your website.

Contact Us

Head of Institute: Prof. Ido Braslavsky

Administrative manager: Rakefet Kalev

Office Address:
Institute of Biochemistry, Food Science and Nutrition,
Robert H. Smith Faculty of Agriculture, Food and Environment,
The Hebrew University of Jerusalem, 
Herzl 229, Rehovot 7610001, ISRAEL

Tel: +972 - (0)8-9489385
Fax: +972 - (0)8-9363208
Email Address: rakefetk@savion.huji.ac.il

Publications

2018
Xue, A. Y. ; Di Pizio, A. ; Levit, A. ; Yarnitzky, T. ; Penn, O. ; Pupko, T. ; Niv, M. Y. . Independent Evolution Of Strychnine Recognition By Bitter Taste Receptor Subtypes. Frontiers in Molecular Biosciences 2018, 5, 9. Publisher's VersionAbstract
The 25 human bitter taste receptors (hT2Rs) recognize thousands of structurally and chemically diverse bitter substances. The binding modes of human bitter taste receptors hT2R10 and hT2R46, which are responsible for strychnine recognition, were previously established using site-directed mutagenesis, functional assays and molecular modeling. Here we construct a phylogenetic tree and reconstruct ancestral sequences of the T2R10 and T2R46 clades. We next analyze the binding sites in view of experimental data to predict their ability to recognize strychnine. This analysis suggests that the common ancestor of hT2R10 and hT2R46 is unlikely to bind strychnine in the same mode as either of its two descendants. Estimation of relative divergence times shows that hT2R10 evolved earlier than hT2R46. Strychnine recognition was likely acquired first by the earliest common ancestor of the T2R10 clade before the separation of primates from other mammals, and was highly conserved within the clade. It was probably independently acquired by the common ancestor of T2R43-47 before the homo-ape speciation, lost in most T2Rs within this clade, but enhanced in the hT2R46 after humans diverged from the rest of primates. Our findings suggest hypothetical strychnine T2R receptors in several species, and serve as an experimental guide for further study. Improved understanding of how bitter taste receptors acquire the ability to be activated by particular ligands is valuable for the development of sensors for bitterness and for potential toxicity.
Ben Abu, N. ; Harries, D. ; Voet, H. ; Niv, M. Y. . The Taste Of Kcl &Ndash; What A Difference A Sugar Makes. Food Chemistry 2018, 255, 165 - 173. Publisher's VersionAbstract
Dramatic increase in NaCl consumption lead to sodium intake beyond health guidelines. KCl substitution helps reduce sodium intake but results in a bitter-metallic off-taste. Two disaccharides, trehalose and sucrose, were tested in order to untangle the chemical (increase in effective concentration of KCl due to sugar addition) from the sensory effects. The bitter-metallic taste of KCl was reduced by these sugars, while saltiness was enhanced or unaltered. The perceived sweetness of sugar, regardless of its type and concentration, was an important factor in KCl taste modulation. Though KCl was previously shown to increase the chemical activity of trehalose but not of sucrose, we found that it suppressed the perceived sweetness of both sugars. Therefore, sensory integration was the dominant factor in the tested KCl-sugar combinations.
Nowak, S. ; Di Pizio, A. ; Levit, A. ; Niv, M. Y. ; Meyerhof, W. ; Behrens, M. . Reengineering The Ligand Sensitivity Of The Broadly Tuned Human Bitter Taste Receptor Tas2R14. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862, 2162 - 2173. Publisher's VersionAbstract
BackgroundIn humans, bitterness perception is mediated by ~25 bitter taste receptors present in the oral cavity. Among these receptors three, TAS2R10, TAS2R14 and TAS2R46, exhibit extraordinary wide agonist profiles and hence contribute disproportionally high to the perception of bitterness. Perhaps the most broadly tuned receptor is the TAS2R14, which may represent, because of its prominent expression in extraoral tissues, a receptor of particular importance for the physiological actions of bitter compounds beyond taste. Methods To investigate how the architecture and composition of the TAS2R14 binding pocket enables specific interactions with a complex array of chemically diverse bitter agonists, we carried out homology modeling and ligand docking experiments, subjected the receptor to point-mutagenesis of binding site residues and performed functional calcium mobilization assays. Results In total, 40 point-mutated receptor constructs were generated to investigate the contribution of 19 positions presumably located in the receptor's binding pocket to activation by 7 different TAS2R14 agonists. All investigated positions exhibited moderate to pronounced agonist selectivity. Conclusions Since numerous modifications of the TAS2R14 binding pocket resulted in improved responses to individual agonists, we conclude that this bitter taste receptor might represent a suitable template for the engineering of the agonist profile of a chemoreceptive receptor. General significance The detailed structure-function analysis of the highly promiscuous and widely expressed TAS2R14 suggests that this receptor must be considered as potentially frequent target for known and novel drugs including undesired off-effects.
Dagan-Wiener, A. ; Di Pizio, A. ; Nissim, I. ; Bahia, M. S. ; Dubovski, N. ; Margulis, E. ; Niv, M. Y. . Bitterdb: Taste Ligands And Receptors Database In 2019. Nucleic Acids Researchnar 2018, 47, D1179 - D1185. Publisher's VersionAbstract
BitterDB (http://bitterdb.agri.huji.ac.il) was introduced in 2012 as a central resource for information on bitter-tasting molecules and their receptors. The information in BitterDB is frequently used for choosing suitable ligands for experimental studies, for developing bitterness predictors, for analysis of receptors promiscuity and more. Here, we describe a major upgrade of the database, including significant increase in content as well as new features. BitterDB now holds over 1000 bitter molecules, up from the initial 550. When available, quantitative sensory data on bitterness intensity as well as toxicity information were added. For 270 molecules, at least one associated bitter taste receptor (T2R) is reported. The overall number of ligand–T2R associations is now close to 800. BitterDB was extended to several species: in addition to human, it now holds information on mouse, cat and chicken T2Rs, and the compounds that activate them. BitterDB now provides a unique platform for structure-based studies with high-quality homology models, known ligands, and for the human receptors also data from mutagenesis experiments, information on frequently occurring single nucleotide polymorphisms and links to expression levels in different tissues.
Di Pizio, A. ; Shy, N. ; Behrens, M. ; Meyerhof, W. ; Niv, M. Y. . Molecular Features Underlying Selectivity In Chicken Bitter Taste Receptors. Front Mol Biosci 2018, 5, 6.Abstract
Chickens sense the bitter taste of structurally different molecules with merely three bitter taste receptors ( taste 2 receptors, ggTas2rs), representing a minimal case of bitter perception. Some bitter compounds like quinine, diphenidol and chlorpheniramine, activate all three ggTas2rs, while others selectively activate one or two of the receptors. We focus on bitter compounds with different selectivity profiles toward the three receptors, to shed light on the molecular recognition complexity in bitter taste. Using homology modeling and induced-fit docking simulations, we investigated the binding modes of ggTas2r agonists. Interestingly, promiscuous compounds are predicted to establish polar interactions with position 6.51 and hydrophobic interactions with positions 3.32 and 5.42 in all ggTas2rs; whereas certain residues are responsible for receptor selectivity. Lys and Asn are suggested as ggTas2r1-specificity-conferring residues; Gln as ggTas2r2-specificity-conferring residue; Ser and Gln as ggTas2r7-specificity conferring residues. The selectivity profile of quinine analogs, quinidine, epiquinidine and ethylhydrocupreine, was then characterized by combining calcium-imaging experiments and approaches. ggTas2r models were used to virtually screen BitterDB compounds. ~50% of compounds known to be bitter to human are likely to be bitter to chicken, with 25, 20, 37% predicted to be ggTas2r1, ggTas2r2, ggTas2r7 agonists, respectively. Predicted ggTas2rs agonists can be tested with and experiments, contributing to our understanding of bitter taste in chicken and, consequently, to the improvement of chicken feed.
Qutob, N. ; Masuho, I. ; Alon, M. ; Emmanuel, R. ; Cohen, I. ; Di Pizio, A. ; Madore, J. ; Elkahloun, A. ; Ziv, T. ; Levy, R. ; et al. Rgs7 Is Recurrently Mutated In Melanoma And Promotes Migration And Invasion Of Human Cancer Cells. Scientific Reports 2018, 8, 653. Publisher's VersionAbstract
Analysis of 501 melanoma exomes revealed RGS7, which encodes a GTPase-accelerating protein (GAP), to be a tumor-suppressor gene. RGS7 was mutated in 11% of melanomas and was found to harbor three recurrent mutations (p.R44C, p.E383K and p.R416Q). Structural modeling of the most common recurrent mutation of the three (p.R44C) predicted that it destabilizes the protein due to the loss of an H-bond and salt bridge network between the mutated position and the serine and aspartic acid residues at positions 58 as 61, respectively. We experimentally confirmed this prediction showing that the p.R44C mutant protein is indeed destabilized. We further show RGS7 p.R44C has weaker catalytic activity for its substrate Gαo, thus providing a dual mechanism for its loss of function. Both of these effects are expected to contribute to loss of function of RGS7 resulting in increased anchorage-independent growth, migration and invasion of melanoma cells. By mutating position 56 in the R44C mutant from valine to cysteine, thereby enabling the formation of a disulfide bridge between the two mutated positions, we slightly increased the catalytic activity and reinstated protein stability, leading to the rescue of RGS7′s function as a tumor suppressor. Our findings identify RGS7 as a novel melanoma driver and point to the clinical relevance of using strategies to stabilize the protein and, thereby, restore its function.
Oclon, E. ; Solomon, G. ; Hayouka, Z. ; Salame, T. M. ; Goffin, V. ; Gertler, A. . Novel Reagents For Human Prolactin Research: Large-Scale Preparation And Characterization Of Prolactin Receptor Extracellular Domain, Non-Pegylated And Pegylated Prolactin And Prolactin Receptor Antagonist. Protein Eng Des Sel 2018, 31, 7-16.Abstract
To provide new tools for in vitro and in vivo prolactin (PRL) research, novel protocols for large-scale preparation of untagged human PRL (hPRL), a hPRL antagonist (del 1-9-G129R hPRL) that acts as a pure antagonist of hPRL in binding to hPRL receptor extracellular domain (hPRLR-ECD), and hPRLR-ECD are demonstrated. The interaction of del 1-9-G129R hPRL with hPRLR-ECD was demonstrated by competitive non-radioactive binding assay using biotinylated hPRL as the ligand and hPRLR-ECD as the receptor, by formation of stable 1:1 complexes with hPRLR-ECD under non-denaturing conditions using size-exclusion chromatography, and by surface plasmon resonance methodology. In all three types of experiments, the interaction of del 1-9-G129R hPRL was equal to that of unmodified hPRL. Del 1-9-G129R hPRL inhibited the hPRL-induced proliferation of Baf/LP cells stably expressing hPRLR. Overall, the biological properties of del 1-9-G129R hPRL prepared by the protocol described herein were similar to those of the antagonist prepared using the protocol reported in the original study; however, the newly described protocol improved yields by >6-fold. To provide long-lasting hPRL as a new reagent needed for in vivo experiments, we prepared its mono-pegylated analogue and found that pegylation lowers its biological activity in a homologous in vitro assay. As its future use will require the development of a PRL antagonist with highly elevated affinity, del 1-9-G129R hPRL was expressed on the surface of yeast cells. It retained its binding capacity for hPRLR-ECD, and this methodology was shown to be suitable for future development of high-affinity hPRL antagonists using a library of randomly mutated open reading frame of del 1-9-G129R hPRL and selecting high-affinity mutants by yeast surface display methodology.
Hu, S. ; Zhao, Y. ; Hayouka, Z. ; Wang, D. ; Jiao, S. . Inactivation Kinetics For Salmonella Typhimurium In Red Pepper Powders Treated By Radio Frequency Heating. Food Control 2018, 85, 437 - 442. Publisher's VersionAbstract
Radio frequency (RF) dielectric heating has been investigated to inactivate pathogens in some low-moisture foods. This study was aimed to evaluate RF inactivation effects on Salmonella typhimurium in red pepper powders, by focusing on the influence of sample initial water activity (aw) and applying Weibull model to describe the inactivation curves. The experimental results showed that RF heating rate increased when aw was in the range of 0.57–0.71, but decreased after aw reached to 0.71. During the come-up time of RF heating, 2–3 log reduction of the pathogen was achieved depending on aw levels. Increasing initial aw could first increased log reductions and then decreased the log reductions, optimum aw level was 0.71 for RF inactivation of Salmonella in red pepper powders. For red pepper powders with aw of 0.71, RF heating to 70 °C (come-up time was 110 s) with holding time over 60 s could achieve >5 log reduction of S. typhimurium. Weibull model well fitted the survival curves of the pathogen with goodness of fit (R2 > 0.93, RMSE<0.29). Scale factor (b) of the model increased with treatment temperature increasing, while the shape factor (n) was independent on temperature. This study provided basic guideline for using RF heating to inactivate Salmonella in red pepper powders.
Topman, S. ; Tamir-Ariel, D. ; Bochnic-Tamir, H. ; Stern Bauer, T. ; Shafir, S. ; Burdman, S. ; Hayouka, Z. . Random Peptide Mixtures As New Crop Protection Agents. Microb Biotechnol 2018, 11, 1027-1036.Abstract
Many types of crops are severely affected by at least one important bacterial disease. Chemical control of bacterial plant diseases in the field vastly relies on copper-based bactericides, yet with limited efficacy. In this study, we explored the potential of two random peptide mixture (RPM) models as novel crop protection agents. These unique peptide mixtures consist of random combination of l-phenylalanine and l- or d-lysine (FK-20 and FdK-20, respectively) along the 20 mer chain length of the peptides. Both RPMs displayed powerful bacteriostatic and bactericidal activities towards strains belonging to several plant pathogenic bacterial genera, for example, Xanthomonas, Clavibacter and Pseudomonas. In planta studies in the glasshouse revealed that RPMs significantly reduced disease severity of tomato and kohlrabi plants infected with Xanthomonas perforans and Xanthomonas campestris pv. campestris respectively. Moreover, RPM effects on reduction in disease severity were similar to those exerted by the commercial copper-based bactericide Kocide 2000 that was applied at a 12-fold higher concentration of the active compound relative to the RPM treatments. Importantly, the two tested RPM compounds had no toxic effect on survival of bees and Caco-2 mammalian cells. This study demonstrates the potential of these innovative RPMs to serve as crop protection agents against crop diseases caused by phytopathogenic bacteria.
Stern Bauer, T. ; Hayouka, Z. . Random Mixtures Of Antimicrobial Peptides Inhibit Bacteria Associated With Pasteurized Bovine Milk. J Pept Sci 2018, 24, e3088.Abstract
The shelf life of pasteurized bovine milk is limited by microorganism activity as surviving bacteria continue to grow in the bovine milk, eventually causing milk spoilage. In the current study, we used matrix-assisted laser desorption ionization time of flight mass spectrometry to identify pasteurized bovine milk-associated mesophilic and psychrotrophic bacteria. We have recently designed random cationic peptide mixtures that possess strong antimicrobial and antibiofilm properties. These compounds are cheap and easy to synthesize and represent a new class of antimicrobial agents. Here, we show that the random peptide mixtures are able to efficiently eradicate the bacteria identified as associated with pasteurized bovine milk, and reduced significantly the growth of Bacillus subtilis in milk. We propose these antimicrobial peptides as potential candidates for integration in bioactive milk and food packaging to prevent bacterial growth and extend the shelf life of food.
Ocłoń, E. ; Solomon, G. ; Hayouka, Z. ; Gertler, A. . Preparation Of Biologically Active Monomeric Recombinant Zebrafish (Danio Rerio) And Rainbow Trout (Oncorhynchus Mykiss) Recombinant Growth Hormones. Fish Physiology and Biochemistry 2018, 44, 1215 - 1222. Publisher's VersionAbstract
Fish growth hormones (GHs) play an important role in regulating growth, metabolism, reproduction, osmoregulation, and immunity and have thus garnered attention for their application in aquaculture. Zebrafish GH (zGH) cDNA or rainbow trout GH (rtGH) cDNA was cloned into the pMon3401 vector, expressed in MON105-competent Escherichia coli and purified to homogeneity. Their biological activity was evidenced by their ability to interact with ovine GH receptor extracellular domain and stimulate GH receptor-mediated proliferation in FDC-P1-3B9 cells stably transfected with rabbit GH receptor. The relative affinity of zGH and rtGH, estimated by IC50, was about 38-fold and 512-fold lower, respectively, than ovine GH. This is likely the reason for the low biological activity in cells with rabbit GH receptor, ~ 36-fold lower for zGH and ~ 107-fold lower for rtGH than for human GH. This was not due to improper refolding, as evidenced by circular dichroism analysis. Predicting the activity of fish GHs is problematic as there is no one single optimal in vitro bioassay; heterologous assays may be ambiguous, and only homologous assays are suitable for measuring activity.
Yehuda, A. ; Slamti, L. ; Bochnik-Tamir, R. ; Malach, E. ; Lereclus, D. ; Hayouka, Z. . Turning Off Bacillus Cereus Quorum Sensing System With Peptidic Analogs. Chemical Communications 2018, 54, 9777 - 9780. Publisher's VersionAbstract
We explored quenching of the PlcR–PapR quorum-sensing system in Bacillus cereus. We generated PapR7-peptidic derivatives that inhibit this system and thus the production of virulence factors, reflected by a loss in hemolytic activity, without affecting bacterial growth. To our knowledge, these peptides represent the first potent synthetic inhibitors of quorum-sensing in B. cereus.
Vilela, C. ; Kurek, M. ; Hayouka, Z. ; Röcker, B. ; Yildirim, S. ; Antunes, M. D. C. ; Nilsen-Nygaard, J. ; Pettersen, M. K. ; Freire, C. S. R. . A Concise Guide To Active Agents For Active Food Packaging. Trends in Food Science & Technology 2018, 80, 212 - 222. Publisher's VersionAbstract
BackgroundThe ever-growing world population results in the ineluctable increase of food demand which translates in the augment of the global market of packaging materials. Hence, the concept of active packaging materializes as a technology to enhance the safety, quality and shelf-life of the packaged foods. Active packaging systems can contribute to the reduction of food waste by providing, apart from an inert barrier to external conditions, several functions associated with food preservation, namely absorbing/scavenging, releasing/emitting and removing properties, temperature, microbial and quality control. Scope and approach The purpose of this review is to present a concise (but wide-ranging) appraisal on the latest advances in active agents for active food packaging. Emphasis is placed on active functions such as antimicrobial and antioxidant activity, oxygen and ethylene scavenging, and carbon dioxide emitting. An effort was made to highlight representative articles that prompted research on active agents towards viable market solutions. Key findings and conclusions Active packaging is a thriving field given its duality as barrier to external detrimental factors and active role in food preservation and quality. The use of natural active agents is a flourishing field due to the general concern towards natural-based additives. Nevertheless, research is still in its early stages with a long way to go in the design of innovative and economical active packaging materials containing appropriate active agents. The interaction between packaging, environment and food is the key challenge for achieving commercial translation.
Goldstein, I. ; Hager, G. L. . Dynamic Enhancer Function In The Chromatin Context. Wiley Interdiscip Rev Syst Biol Med 2018, 10.Abstract
Enhancers serve as critical regulatory elements in higher eukaryotic cells. The characterization of enhancer function has evolved primarily from genome-wide methodologies, including chromatin immunoprecipitation (ChIP-seq), DNase-I hypersensitivity (DNase-seq), digital genomic footprinting (DGF), and the chromosome conformation capture techniques (3C, 4C, and Hi-C). These population-based assays average signals across millions of cells and lead to enhancer models characterized by static and sequential binding. More recently, fluorescent microscopy techniques, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single molecule tracking (SMT), reveal a highly dynamic binding behavior for these factors in live cells. Furthermore, a refined analysis of genomic footprinting suggests that many transcription factors leave minimal or no footprints in chromatin, even when present and active in a given cell type. In this study, we review the implications of these new approaches for an accurate understanding of enhancer function in real time. In vivo SMT, in particular, has recently evolved as a promising methodology to probe enhancer function in live cells. Integration of findings from the many approaches now employed in the study of enhancer function suggest a highly dynamic view for the action of enhancer activating factors, viewed on a time scale of milliseconds to seconds, rather than minutes to hours. WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Imaging.
Goldstein, I. ; Hager, G. L. . The Three Ds Of Transcription Activation By Glucagon: Direct, Delayed, And Dynamic. Endocrinology 2018, 159, 206-216.Abstract
Upon lowered blood glucose occurring during fasting, glucagon is secreted from pancreatic islets, exerting various metabolic effects to normalize glucose levels. A considerable portion of these effects is mediated by glucagon-activated transcription factors (TFs) in liver. Glucagon directly activates several TFs via immediate cyclic adenosine monophosphate (cAMP)- and calcium-dependent signaling events. Among these TFs, cAMP response element-binding protein (CREB) is a major factor. CREB recruits histone-modifying enzymes and cooperates with other TFs on the chromatin template to increase the rate of gene transcription. In addition to direct signal transduction, the transcriptional effects of glucagon are also influenced by dynamic TF cross talk. Specifically, assisted loading of one TF by a companion TF leads to increased binding and activity. Lastly, transcriptional regulation by glucagon is also exerted by TF cascades by which a primary TF induces the gene expression of secondary TFs that bring about their activity a few hours after the initial glucagon signal. This mechanism of a delayed response may be instrumental in establishing the temporal organization of the fasting response by which distinct metabolic events separate early from prolonged fasting. In this mini-review, we summarize recent advances and critical discoveries in glucagon-dependent gene regulation with a focus on direct TF activation, dynamic TF cross talk, and TF cascades.
Froy, O. ; Garaulet, M. . The Circadian Clock In White And Brown Adipose Tissue: Mechanistic, Endocrine, And Clinical Aspects. Endocrine reviews 2018, 39, 261 - 273. Publisher's VersionAbstract
Obesity is a major risk factor for the development of illnesses, such as insulin resistance and hypertension, and has become a serious public health problem. Mammals have developed a circadian clock located in the hypothalamic suprachiasmatic nuclei (SCN) that responds to the environmental light-dark cycle. Clocks similar to the one located in the SCN are found in peripheral tissues, such as the kidney, liver, and adipose tissue. The circadian clock regulates metabolism and energy homeostasis in peripheral tissues by mediating activity and/or expression of key metabolic enzymes and transport systems. Knockouts or mutations in clock genes that lead to disruption of cellular rhythmicity have provided evidence to the tight link between the circadian clock and metabolism. In addition, key proteins play a dual role in regulating the core clock mechanism, as well as adipose tissue metabolism, and link circadian rhythms with lipogenesis and lipolysis. Adipose tissues are distinguished as white, brown, and beige (or brite), each with unique metabolic characteristics. Recently, the role of the circadian clock in regulating the differentiation into the different adipose tissues has been investigated. In this review, the role of clock proteins and the downstream signaling pathways in white, brown, and brite adipose tissue function and differentiation will be reviewed. In addition, chronodisruption and metabolic disorders and clinical aspects of circadian adiposity will be addressed.
Christ, P. ; Sowa, A. S. ; Froy, O. ; Lorentz, A. . The Circadian Clock Drives Mast Cell Functions In Allergic Reactions. Frontiers in immunology 2018, 9, 1526 - 1526. Publisher's VersionAbstract
Allergic diseases are known to vary in the severity of their symptoms throughout the day/night cycle. This rhythmicity is also observed in mast cell function and responsiveness. Mast cells are key effector cells of allergic reactions and release cytokines, chemokines, and important inflammatory mediators such as histamine, which have been shown to display diurnal variation. Recent research clarified that mast cells are controlled by their internal clock-which is regulated by a specific set of clock genes-as well as external factors such as light sensed by the suprachiasmatic nuclei, hormonal status, or diet. Here, we give an overview of the connections between circadian clock, mast cells, and allergic disease. Further work aimed at studying the role of chronotherapy/chronomedicine should take into account this rhythmic nature of not only mast cells but also the immune responses generated by mast cell signaling.
Weintraub, Y. ; Cohen, S. ; Dotan, I. ; Tauman, R. ; Chapnik, N. ; Froy, O. . P334 Does The Circadian Clock Have A Role In The Pathogenesis Of Inflammatory Bowel Disease (Ibd)?. Journal of Crohn's and Colitisecco-jcc 2018, 12, S270 - S271. Publisher's VersionAbstract
Sleep dysfunction modifies the immune system and has been implicated as a potential trigger of IBD flares. Sleep dysfunction also alters the synchrony among clock genes leading to disruption of overall circadian regulation. Specifically, in the intestine, it is manifested by increased gut cellular permeability. We hypothesised that changes in mucosal immune balance may be reflected by alterations in the circadian clock and constitute an unattended pathogenic mechanism of IBD. Our aim was to investigate intestinal and systemic clock gene expression (in patients with newly diagnosed IBD and in healthy controls).Patients and controls were recruited upon diagnostic endoscopic evaluation. Demographics, familial medical history, sleep questionnaires, disease activity indices, and endoscopic scores were recorded. Anthropometric parameters, C-reactive protein (CRP), albumin, haemoglobin (Hb), and fecal calprotectin (Fcal) were measured as well. Peripheral blood and tissue samples were analysed for clock gene (Clock, Bmal1, Cry1, Cry2, Per1, and Per2) expression.Of the 32 participants recruited (age 8–25 years, median: 16.1), 14 had newly diagnosed IBD and 18 were healthy controls. Age, gender, sleep questionnaire scores, and time of endoscopy were not statistically different between the groups. Hb, CRP, and Fcal levels were significantly higher in the IBD compared with the healthy controls group (p < 0.05), while albumin was significantly lower (p < 0.05). Clock gene expression (Clock, Cry1, Cry2, Per1, and Per2) in WBC was decreased in newly diagnosed IBD patients compared with health controls (p < 0.05). Similarly, the expression level of the aforementioned genes was lower in inflamed intestinal tissues (p < 0.05). Interestingly, similar reduction in clock gene expression was seen even in healthy (non-inflamed) intestinal tissue from IBD patients (p < 0.05).Clock gene expression is reduced in both inflamed and non-inflamed intestinal tissue in patients with newly diagnosed IBD. Moreover, IBD patients show a systemic reduction in clock gene expression. Our findings may lead to new therapeutic approaches and strategies as well as serve as diagnostic tools in IBD.
Froy, O. . Circadian Rhythms, Nutrition And Implications For Longevity In Urban Environments. Proceedings of the Nutrition Society 2018, 77, 216-222. Publisher's VersionAbstract
Presently, about 12% of the population is 65 years or older and by the year 2030 that figure is expected to reach 21%. In order to promote the well-being of the elderly and to reduce the costs associated with health care demands, increased longevity should be accompanied by ageing attenuation. Energy restriction, which limits the amount of energy consumed to 60–70% of the daily intake, and intermittent fasting, which allows the food to be available ad libitum every other day, extend the life span of mammals and prevent or delay the onset of major age-related diseases, such as cancer, diabetes and cataracts. Recently, we have shown that well-being can be achieved by resetting of the circadian clock and induction of robust catabolic circadian rhythms via timed feeding. In addition, the clock mechanism regulates metabolism and major metabolic proteins are key factors in the core clock mechanism. Therefore, it is necessary to increase our understanding of circadian regulation over metabolism and longevity and to design new therapies based on this regulation. This review will explore the present data in the field of circadian rhythms, ageing and metabolism.
Adar, C. ; Sirotinskaya, V. ; Bar Dolev, M. ; Friehmann, T. ; Braslavsky, I. . Falling Water Ice Affinity Purification Of Ice-Binding Proteins. Scientific Reports 2018, 8, 11046. Publisher's VersionAbstract
Ice-binding proteins (IBPs) permit their hosts to thrive in the presence of ice. The ability of IBPs to control ice growth makes them potential additives in industries ranging from food storage and cryopreservation to anti-icing systems. For IBPs to be used in commercial applications, however, methods are needed to produce sufficient quantities of high-quality proteins. Here, we describe a new method for IBP purification, termed falling water ice affinity purification (FWIP). The method is based on the affinity of IBPs for ice and does not require molecular tags. A crude IBP solution is allowed to flow over a chilled vertical surface of a commercial ice machine. The temperature of the surface is lowered gradually until ice crystals are produced, to which the IBPs bind but other solutes do not. We found that a maximum of 35 mg of IBP was incorporated in 1 kg of ice. Two rounds of FWIP resulted in >95% purity. An ice machine that produces 60 kg of ice per day can be used to purify one gram of IBP per day. In combination with efficient concentration of the protein solution by tangential flow filtration the FWIP method is suitable for the purification of grams of IBPs for research purposes and applications.