2019
Yedidia, I. ; Schultz, K. ; Golan, A. ; Gottlieb, H. E. ; Kerem, Z. .
Structural Elucidation Of Three Novel Kaempferol Otri-Glycosides That Are Involved In The Defense Response Of Hybrid Ornithogalum To Pectobacterium Carotovorum.
Molecules 2019,
24.
Publisher's VersionAbstractOrnithogalum is an ornamental flowering species that grows from a bulb and is highly susceptible to soft-rot disease caused by Pectobacterium carotovorum (Pc). Interspecific hybridization between O. thyrsoides and O. dubium yielded hybrids with enhanced resistance to that pathogen. The hybrids displayed distinct phenolic-compound profiles with several peaks that were specifically heightened following Pc infection. Three of these compounds were isolated and identified as novel kaempferol O-tri-glycosides. The structures of these compounds were elucidated using reversed phase high-performance liquid chromatography (RP-LC), RP-LC coupled to high-resolution mass spectrometry (RP-LC-MS), and nuclear magnetic resonance (NMR) (1D 1H and 13C, DEPT, HMQC, HMBC, COSY, and NOE), in order to achieve pure and defined compounds data. The new compounds were finally identified as kaempferol 3-O-[4-O-α-L-(3-O-acetic)-rhamnopyranosyl-6-O- β-D-xylopyranosyl]-β-D-glucopyranoside, kaempferol 3-O-[4-O-α-L-(2-O-acetic)-rhamnopyranosyl- 6-O-β-D-xylopyranosyl]-β-D-glucopyranoside and kaempferol 3-O-[4-O-α-L-(2,3-O-diacetic)- rhamnopyranosyl-6-O-β-D-xylopyranosyl]-β-D-glucopyranoside. © 2019 MDPI AG. All rights reserved.
de Roos, B. ; Aura, A. - M. ; Bronze, M. ; Cassidy, A. ; Conesa, M. - T. G. ; Gibney, E. R. ; Greyling, A. ; Kaput, J. ; Kerem, Z. ; Knežević, N. ; et al. Targeting The Delivery Of Dietary Plant Bioactives To Those Who Would Benefit Most: From Science To Practical Applications.
European Journal of Nutrition 2019,
58, 65-73.
Publisher's VersionAbstractBackground: A healthy diet and optimal lifestyle choices are amongst the most important actions for the prevention of cardiometabolic diseases. Despite this, it appears difficult to convince consumers to select more nutritious foods. Furthermore, the development and production of healthier foods do not always lead to economic profits for the agro-food sector. Most dietary recommendations for the general population represent a “one-size-fits-all approach” which does not necessarily ensure that everyone has adequate exposure to health-promoting constituents of foods. Indeed, we now know that individuals show a high variability in responses when exposed to specific nutrients, foods, or diets. Purpose: This review aims to highlight our current understanding of inter-individual variability in response to dietary bioactives, based on the integration of findings of the COST Action POSITIVe. We also evaluate opportunities for translation of scientific knowledge on inter-individual variability in response to dietary bioactives, once it becomes available, into practical applications for stakeholders, such as the agro-food industry. The potential impact from such applications will form an important impetus for the food industry to develop and market new high quality and healthy foods for specific groups of consumers in the future. This may contribute to a decrease in the burden of diet-related chronic diseases. © 2019, The Author(s).
Milenkovic, D. ; Declerck, K. ; Guttman, Y. ; Kerem, Z. ; Claude, S. ; Weseler, A. R. ; Bast, A. ; Schroeter, H. ; Morand, C. ; Vandenberghe, W. .
(−)-Epicatechin Metabolites Promote Vascular Health Through Epigenetic Reprogramming Of Endothelial-Immune Cell Signaling And Reversing Systemic Low-Grade Inflammation.
Biochemical Pharmacology 2019.
Publisher's VersionAbstractIngestion of (−)-epicatechin flavanols reverses endothelial dysfunction by increasing flow mediated dilation and by reducing vascular inflammation and oxidative stress, monocyte-endothelial cell adhesion and transendothelial monocyte migration in vitro and in vivo. This involves multiple changes in gene expression and epigenetic DNA methylation by poorly understood mechanisms. By in silico docking and molecular modeling we demonstrate favorable binding of different glucuronidated, sulfated or methylated (−)-epicatechin metabolites to different DNA methyltransferases (DNMT1/DNMT3A). In favor of this model, genome-wide DNA methylation profiling of endothelial cells treated with TNF and different (−)-epicatechin metabolites revealed specific DNA methylation changes in gene networks controlling cell adhesion-extravasation endothelial hyperpermeability as well as gamma-aminobutyric acid, renin-angiotensin and nitric oxide hypertension pathways. Remarkably, blood epigenetic profiles of an 8 weeks intervention with monomeric and oligomeric flavanols (MOF) including (−)-epicatechin in male smokers revealed individual epigenetic gene changes targeting similar pathways as the in vitro exposure experiments in endothelial cells. Furthermore, epigenetic changes following MOF diet intervention oppose atherosclerosis associated epigenetic changes. In line with biological data, the individual epigenetic response to a MOF diet is associated with different vascular health parameters (glutathione peroxidase 1 and endothelin-1 expression, acetylcholine-mediated microvascular response), in part involving systemic shifts in blood immune cell types which reduce the neutrophil–lymphocyte ratio (NLR). Altogether, our study suggests that different (−)-epicatechin metabolites promote vascular health in part via epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. © 2019 Elsevier Inc.
Ofir, O. ; Buch, A. ; Rouach, V. ; Goldsmith, R. ; Stern, N. ; Monsonego-Ornan, E. .
Association Between Abdominal Obesity And Fragility Fractures Among Elderly Israeli Women.
Aging Clinical and Experimental Research 2019.
Publisher's VersionAbstractBackground: Obesity has been traditionally viewed as a protective factor for fractures. Recent studies have challenged this concept, particularly regarding abdominal obesity. We aimed to investigate the association between abdominal obesity, body mass index (BMI) and fragility fractures prevalence in a sample of community-dwelling elderly Israeli women. Methods: The data in this cross-sectional study were based on ‘Mabat Zahav’—a survey of a nationally representative sample of elderly Israelis. The study population included 669 women. Data on fragility fractures site and circumstances were self-reported, and height, weight, waist and calf circumferences were measured. Waist circumference (WC) variable was divided into tertiles: < 88 cm, 88–99 cm and > 99 cm. Results: Sixty-five women reported fragility fractures (14 hip fractures, 18 vertebral fractures and 39 wrist fractures). Mean age was 73.9 ± 5.9 years, mean BMI was 29.9 ± 5 kg/m2 and mean WC was 93.9 ± 12 cm. While BMI was not associated with osteoporotic fractures, abdominal obesity (WC > 88 cm) was positively associated with fragility fractures, independently of age, smoking, physical activity [middle and high WC tertiles 3.15 (95% CI 1.41–7.02), 2.78 (95% CI 1.05–7.31), respectively]. Conclusions: Among this sample of elderly women, abdominal obesity was positively associated with fragility fractures, independently of age, smoking, physical activity and BMI. Waist circumference, an easily measured anthropometric indicator, may be useful for assessing the risk of fragility fractures in elderly women, particularly among those with normal or high BMI—a vast population which has been traditionally considered as having lower fracture risk. © 2019, Springer Nature Switzerland AG.
Demishtein, K. ; Reifen, R. ; Shemesh, M. .
Antimicrobial Properties Of Magnesium Open Opportunities To Develop Healthier Food.
Nutrients 2019,
11.
Publisher's VersionAbstractMagnesium is a vital mineral that takes part in hundreds of enzymatic reactions in the human body. In the past several years, new information emerged in regard to the antibacterial effect of magnesium. Here we elaborate on the recent knowledge of its antibacterial effect with emphasis on its ability to impair bacterial adherence and formation complex community of bacterial cells called biofilm. We further talk about its ability to impair biofilm formation in milk that provides opportunity for developing safer and qualitative dairy products. Finally, we describe the pronounced advantages of enrichment of food with magnesium ions, which result in healthier and more effcient food products. © 2019 by the authors.
Nimri, L. ; Peri, I. ; Yehuda-Shnaidman, E. ; Schwartz, B. .
Adipocytes Isolated From Visceral And Subcutaneous Depots Of Donors Differing In Bmi Crosstalk With Colon Cancer Cells And Modulate Their Invasive Phenotype.
Translational Oncology 2019,
12, 1404-1415.
Publisher's VersionAbstractPURPOSE: Mechanisms related the crosstalk between adipocytes and colon cancer cells are still not clear. We hypothesize that molecules and adipocytokines generated from the adipose tissue of obese individuals accentuate the effect on the metabolic reprogramming in colon cancer cells, i.e. induce disarray in energy metabolism networks of the targeted affected colonic epithelial cells, prompting their malignant phenotype. METHODS: To explore the mechanistic behind this crosstalk we conducted a co-culture model system using human colon cancer cells having different malignant abilities and adipocytes from different depots and subjects. RESULTS: The results demonstrate that co-culturing aggressive colon cancer cells such as HM-7 cells, with Visceral or Subcutaneous adipocytes (VA or SA respectively) from lean/obese subjects significantly up-regulate the secretion of the adipokines IL-8, MCP1, and IL-6 from the adipocytes. Surprisingly, the response of co-culturing HM-7 cells with obese SA was substantially more significant. In addition, these effects were significantly more pronounced when using HM-7 cells as compared to the less malignant HCT116 colon cancer cells. Moreover, the results showed that HM-7 cells, co-cultured with VA or SA from obese subjects, expressed higher levels of fatty acid binding protein 4; thus, the conditioned media obtained from the wells contained HM-7 cells and adipocytes from obese subjects was significantly more efficient in promoting invasion of HM-7 cells. CONCLUSIONS: We conclude that interaction between adipocytes and colon cancer cells, especially the highly malignant cells, results in metabolic alterations in colon cancer cells and in highly hypertrophy phenotype which characterized by increasing adipokines secretion from the adipocytes. © 2019 The Authors
Vetvicka, V. ; Gover, O. ; Karpovsky, M. ; Hayby, H. ; Danay, O. ; Ezov, N. ; Hadar, Y. ; Schwartz, B. .
Immune-Modulating Activities Of Glucans Extracted From Pleurotus Ostreatus And Pleurotus Eryngii.
Journal of Functional Foods 2019,
54, 81-91.
Publisher's VersionAbstractWe compared the immune-modulating activity of glucans extracted from P. ostreatus and P. eryngii on phagocytosis of peripheral blood neutrophils, and superoxide release from HL-60 cells. The results suggest that the anti-inflammatory properties of these glucans are partially mediated through modulation of neutrophil effector functions (P. eryngii was more effective). Additionally, both glucans dose-dependently competed for the anti-Dectin-1 and anti-CR3 antibody binding. We then tested the putative anti-inflammatory effects of the extracted glucans in inflammatory bowel disease (IBD) using the dextran sulfate sodium (DSS)–induced model in mice. The clinical symptoms of IBD were efficiently relieved by the treatment with two different doses of the glucan from both fungi. Glucan fractions, from either P. ostreatus or P. eryngii, markedly prevented TNF-α mediated inflammation in the DSS–induced inflamed intestine. These results suggest that there are variations in glucan preparations from different fungi in their anti-inflammatory ability. © 2018 Elsevier Ltd
Vetvicka, V. ; Gover, G. ; Hayby, H. ; Danay, O. ; Ezov, N. ; Hadar, Y. ; Schwartz, B. .
Immunomodulating Effects Exerted By Glucans Extracted From The King Oyster Culinary-Medicinal Mushroom Pleurotus Eryngii (Agaricomycetes) Grown In Substrates Containing Various Concentrations Of Olive Mill Waste.
International Journal of Medicinal Mushrooms 2019,
21, 765-781.
Publisher's VersionAbstractWe have recently demonstrated that we could enhance glucan content in Pleurotus eryngii following cultivation of the mushrooms on a substrate containing different concentrations of olive mill solid waste (OMSW). These changes are directly related to the content of OMSW in the growing substrate. Using dextran sulfate sodium (DSS)-inflammatory bowel disease (IBD) mice model, we measured the colonic inflammatory response to the different glucan preparations. We found that the histology damaging score (HDS) resulting from DSS treatment reach a value of 11.8 ± 2.3 were efficiently downregulated by treatment with the fungal extracted glucans. Glucans extracted from stalks cultivated at 20% OMSW downregulated to a HDS value of 6.4 ± 0.5 whereas those cultivated at 80% OMSW showed the strongest effects (5.5 ± 0.6). Similar downregulatory effects were obtained for expression of various intestinal cytokines. All tested glucans were equally effective in regulating the number of CD14/CD16 monocytes from 18.2 ± 2.7% for DSS to 6.4 ± 2.0 for DSS + glucans extracted from stalks cultivated at 50% OMSW. We tested the effect of glucans on lipopolysaccharide- induced production of TNF-α, which demonstrated that stalk-derived glucans were more effective than caps-derived glucans. Isolated glucans competed with anti-Dectin-1 and anti-CR3 antibodies, indicating that they contain β-glucans recognized by these receptors. In conclusion, the most effective glucans in ameliorating IBD-associated symptoms induced by DSS treatment in mice were glucan extracts prepared from the stalk of P. eryngii grown at higher concentrations of OMSW. We conclude that these stress-induced growing conditions may be helpful in selecting more effective glucans derived from edible mushrooms. © 2019 by Begell House, Inc.
Israeli, E. ; Adler Berken, N. ; Gover, O. ; Waechtershaeuser, E. ; Graeve, L. ; Schwartz, B. .
Recombinant Ostreolysin (Roly) Inhibits The Anti-Adipogenic Hedgehog (Hh) Signaling Pathway In 3T3-L1 Cells.
Journal of Functional Foods 2019,
59, 185-193.
Publisher's VersionAbstractObesity is a nutrition-associated disorder result of an imbalance between energy intake and energy expenditure. Changing adipocytes differentiation patterns is considered as a strategy to treat obesity-related disorders. Recently, much interest is focused on the role of posttranslational modifications of tubulin on adipocyte differentiation. We recently demonstrated that a recombinant version of the fungal protein Ostreolysin (rOly) drastically affects metabolism of adipose tissue. The aim of the present study is to extend our understanding of the in vitro effects of rOly on different adipocytes. We demonstrate that rOly inhibits the anti-adipogenic Hedgehog (Hh) signaling pathway in 3T3-L1 cells. Additionally, rOly affected the gene expression levels of SQSTM1 and Collagen type 1, which are mediated by AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells. We provide a potential molecular mechanistic approach describing that the effect of rOly on adipocytes is mediated by tubulin acetylation and AMPK phosphorylation. © 2019 Elsevier Ltd
Miron, N. ; Tirosh, O. .
Cholesterol Prevents Hypoxia-Induced Hypoglycemia By Regulation Of A Metabolic Ketogenic Shift.
Oxidative Medicine and Cellular Longevity 2019,
2019.
Publisher's VersionAbstractBlood cholesterol levels have been connected to high-altitude adaptation. In the present study, we treated mice with high-cholesterol diets following exposure to acute hypoxic stress and evaluated the effects of the diets on whole-body, liver glucose, and liver fat metabolism. For rapid cholesterol liver uptake, 6-week-old male C57BL/J6 mice were fed with high-cholesterol/cholic acid (CH) diet for 6 weeks and then were exposed to gradual oxygen level reduction for 1 h and hypoxia at 7% oxygen for additional 1 hour using a hypoxic chamber. Animals were than sacrificed, and metabolic markers were evaluated. Hypoxic treatment had a strong hypoglycemic effect that was completely blunted by CH treatment. Decreases in gluconeogenesis and glycogenolysis as well as an increase in ketone body formation were observed. Such changes indicate a metabolic shift from glucose to fat utilization due to activation of the inducible nitric oxide synthase/AMPK axis in the CH-treated animals. Increased ketogenesis was also observed in vitro in hepatocytes after cholesterol treatment. In conclusion, our results show for the first time that cholesterol contributes to metabolic shift and adaptation to hypoxia in vivo and in vitro through induction of HIF-1α and iNOS expression. © 2019 Naama Miron and Oren Tirosh.
Anavi, S. ; Tirosh, O. .
Inos As A Metabolic Enzyme Under Stress Conditions.
Free Radical Biology and Medicine 2019.
Publisher's VersionAbstractNitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from L-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells. © 2019
Kanner, J. ; Shpaizer, A. ; Nelgas, L. ; Tirosh, O. .
S-Nitroso- N-Acetylcysteine (Nac-Sno) As An Antioxidant In Cured Meat And Stomach Medium.
Journal of Agricultural and Food Chemistry 2019,
67, 10930-10936.
Publisher's VersionAbstractThe stability of lipids in meat products depends on the initial concentration of hydroperoxides, the catalytic involvement of metal ions and myoglobin, endogenous antioxidants, and biological and technological factors. Ground meat was treated with additives, sealed in vacuum bags, heated to 75 °C, and stored opened to air at 4 °C. S-Nitroso-N-acetylcysteine (NAC-SNO) at concentration like nitrite used by the industry prevents lipid peroxidation in the product, even after storage for 1 month at 4 °C. The same simulated treatments at different concentrations of both compounds show that NAC-SNO acts as an antioxidant ∼4-fold better than nitrite at pH 6.2 or 3.0. Ascorbic acid significantly improves nitrite antioxidant effect. NAC-SNO was found to prevent, much better than nitrite, accumulation of reactive aldehydes and hydroxynonenal protein modification. In condition like those used by the industry for meat products processing, NAC-SNO acts better than nitrite to provide antioxidant protection without the side effect of N-nitrosation, oxidation, and the loss of nutrient generated by nitrite. © 2019 American Chemical Society.
Alber, J. ; Alladi, S. ; Bae, H. - J. ; Barton, D. A. ; Beckett, L. A. ; Bell, J. M. ; Berman, S. E. ; Biessels, G. J. ; Black, S. E. ; Bos, I. ; et al. White Matter Hyperintensities In Vascular Contributions To Cognitive Impairment And Dementia (Vcid): Knowledge Gaps And Opportunities.
Alzheimer's and Dementia: Translational Research and Clinical Interventions 2019,
5, 107-117.
Publisher's VersionAbstractWhite matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMHs are associated with increased likelihood of cognitive impairment and dementia (including Alzheimer's disease [AD]). WMHs are also seen in cognitively healthy people. In this collaboration of academic, clinical, and pharmaceutical industry perspectives, we identify outstanding questions about WMHs and their relation to cognition, dementia, and AD. What molecular and cellular changes underlie WMHs? What are the neuropathological correlates of WMHs? To what extent are demyelination and inflammation present? Is it helpful to subdivide into periventricular and subcortical WMHs? What do WMHs signify in people diagnosed with AD? What are the risk factors for developing WMHs? What preventive and therapeutic strategies target WMHs? Answering these questions will improve prevention and treatment of WMHs and dementia. © 2019 The Authors
Swan, W. I. ; Pertel, D. G. ; Hotson, B. ; Lloyd, L. ; Orrevall, Y. ; Trostler, N. ; Vivanti, A. ; Howarter, K. B. ; Papoutsakis, C. .
Nutrition Care Process (Ncp) Update Part 2: Developing And Using The Ncp Terminology To Demonstrate Efficacy Of Nutrition Care And Related Outcomes.
Journal of the Academy of Nutrition and Dietetics 2019,
119, 840-855.
Publisher's Version Perito, M. A. ; Sacchetti, G. ; Di Mattia, C. D. ; Chiodo, E. ; Pittia, P. ; Saguy, I. ; Cohen, E. .
Buy Local! Familiarity And Preferences For Extra Virgin Olive Oil Of Italian Consumers.
Journal of Food Products Marketing 2019,
25, 462-477.
Publisher's VersionAbstractOver the last few years, the origin of the local product has played a central role in consumer choices. This study explores what Italian consumers want and look for when purchasing olive oil by combining a web-based survey and a perceived analysis technique. In particular, preferences for different olive oil attributes as well as the psychographic traits of respondents were revealed through a web-based questionnaire administered to Italian consumers (N = 179). From this questionnaire, respondents who indicated their availability to participate further underwent a preference test under blind conditions (N = 99). Respondents also did an expectation test based on the visual observation of the labels. Results showed that the majority of consumers considered local production, PDO and region as factors of highest importance in determining olive oil quality. © 2019, © 2019 Taylor & Francis.
Achmon, Y. ; Dowdy, F. R. ; Simmons, C. W. ; Zohar-Perez, C. ; Rabinovitz, Z. ; Nussinovitch, A. .
Degradation And Bioavailability Of Dried Alginate Hydrocolloid Capsules In Simulated Soil System.
Journal of Applied Polymer Science 2019,
136.
Publisher's VersionAbstractHydrocolloid capsules are common chemical carriers used in many types of applications in foods, biotechnology, and agriculture. Alginate microbeads and macrobeads are some of the more prevalent types of hydrocolloid capsules. Most studies to date have focused on alginate carrier applications but only a few have looked at their bioavailability after use. In this study, alginate carriers were subjected to simulated field conditions and their biodegradation in the soil was evaluated by respiration measurements, visualization, and volatile solids reduction. Using respiration rate, the degradation rate was calculated at 32 ± 3.1% (w/w) after 2 months. The visually estimated volume and volatile solids reduction gave degradation rates of 40 ± 8.6% (v/v) and 22.5 ± 2.5% (w/w), respectively. Moreover, water-loss calculations suggested that the carriers can serve as a stand-alone soil amendment for water retention. These findings emphasize the importance of studying hydrocolloid bioavailability in the soil and alginate carrier suitability for future applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48142. © 2019 Wiley Periodicals, Inc.
Blaychfeld-Magnazi, M. ; Reshef, N. ; Zornitzki, T. ; Madar, Z. ; Knobler, H. .
The Effect Of A Low-Carbohydrate High-Fat Diet And Ethnicity On Daily Glucose Profile In Type 2 Diabetes Determined By Continuous Glucose Monitoring.
European Journal of Nutrition 2019.
Publisher's VersionAbstract{Background and aims: Nutrition is an integral part of type 2 diabetes (T2DM) treatment, but the optimal macronutrient composition is still debated and previous studies have not addressed the role of ethnicity in dietary response. The current study aims were to compare the effect of short-term glycemic response to low-carbohydrate high-fat (LC-HF) diet vs. high-carbohydrate low-fat (HC-LF) diet using continuous glucose monitoring (CGM) and to evaluate the response of individuals with T2DM of Yemenite (Y-DM) and non-Yemenite origin (NY-DM). Methods: Twenty T2DM males, ten Y-DM and ten NY-DM underwent meal tolerance test and indexes of insulin resistance and secretion were calculated. Subsequently, patients were connected to CGM to assess daily glycemic control and glucose variability in response to isocaloric HC-LF or LC-HF diet, receiving each diet for 2 days by providing prepared meals. Daily glucose levels, area under the glucose curve (G-AUC) and parameters of glucose variability [standard deviation (SD), mean amplitude of glycemic excursions (MAGE) and mean absolute glucose (MAG)] were evaluated. Results: The LC-HF resulted in a significantly lower G-AUC (p < 0.001) and in lower variability parameters (p < 0.001) vs. the HC-LF diet. However, Y-DM showed less reduction in glucose variability indices upon diet-switching vs. NY-DM; MAGE decreased, respectively, by 69% vs. 89%
Nakonechny, F. ; Avisar, D. ; Ludmer, Z. ; Brauner, N. ; Ullmann, A. .
Application Of Partially Miscible Solvent System For An Efficient Extraction Of Organic Pollutants From Contaminated Sludge.
Water, Air, and Soil Pollution 2019,
230.
Publisher's VersionAbstractA systematic study of extraction of various organic pollutants from highly contaminated solid media (e.g., sludge) by applying a phase transition of a benign partially miscible solvent system composed of water/ethyl acetate/ethanol was conducted. This solvent system possesses an upper critical solution temperature of about 55 °C. The efficiency of the phase transition extraction (PTE) process is found to be higher and much faster compared to those obtained without phase transition (at ambient temperature). The influence of various operating conditions on the process efficiency was investigated. The performance of the phase transition extraction when applied on contaminated sludge is much better than the extraction with ethyl acetate only, although the latter is shown to be a very efficient solvent for extracting various organic contaminants (e.g., pharmaceuticals, persistent organic pollutants) from aqueous solutions. The efficiency of phase transition extraction from the aqueous solution was somewhat lower than that achieved with ethyl acetate, but it shows a clear advantage in the presence of detergents, as emulsion formation is prevented. © 2019, Springer Nature Switzerland AG.
Dolev, N. ; Katz, Z. ; Ludmer, Z. ; Ullmann, A. ; Brauner, N. ; Goikhman, R. .
New Insights Into Chelator Recycling By A Chelating Resin: From Molecular Mechanisms To Applicability.
Chemosphere 2019,
215, 800-806.
Publisher's VersionAbstractAs part of the project of developing a “green” and highly feasible soil remediation process, recycling an eco-friendly chelating agent, glycine, using Chelex-100 chelating resin, was studied. Two model complexes, copper and nickel glycinates, were tested under various conditions, including equivalent viscosity but different temperature conditions. Two similar complexes demonstrated very different reactivity towards Chelex-100. An in-depth study led to the discovery of unusual metal-dependent mechanisms of the complex-to-resin metal transfer. Particularly, nickel transfer proceeds via a dissociative mechanism, whereas copper transfer does not require pre-dissociation of the complexes, and proceeds via the associative ligand-exchange mechanism. Both processes result in the recovery of the used chelator. The glycine solution was applied on the spiked soil, then recovered on Chelex-100 resin and successfully reused, thus demonstrating a proof of the concept. These findings contribute to the science, strategies, and methodology of both water purification and chelator recycling fields. © 2018 Elsevier Ltd
Gertler, A. ; Solomon, G. .
Pegylated Human Leptin D23L Mutant - Preparation And Biological Activity In Vitro And In Vivo In Male Ob /Ob Mice.
Endocrinology 2019,
160, 891-898.
Publisher's VersionAbstractRecombinant monomeric human leptin (hLEP) and its D23L mutant were prepared in Escherichia coli and pegylated at their N-terminus using 20-kDa methoxy pegylated (PEG)-propionylaldehyde. As determined by both SDS-PAGE and size-exclusion chromatography, the pegylated proteins consisted of >90% monopegylated and <10% double-pegylated species. Circular dichroism spectra showed that their secondary structure, characteristic of all four α-helix bundle cytokines, was not affected by either the D23L mutation or pegylation. Because of the D23L mutation, affinity for hLEP receptor increased 25- and 40-fold for the pegylated and nonpegylated mutant, respectively. However, whereas the proliferation-promoting activity in vitro of nonmutated and mutated nonpegylated hLEP was identical, that of the respective pegylated mutant was approximately sixfold higher compared with the pegylated nonmutated hLEP. This difference was also seen in vivo. Both pegylated hLEPs at all doses significantly decreased body weight and food consumption, as compared with the vehicle-treated control. Once-daily administration of pegylated hLEP D23L at doses of 0.1, 0.3, and 1 mg/kg for 14 consecutive days in ob/ob mice resulted in significantly decreased body weight and food consumption as compared with respective pegylated hLEP-treated animals, with the biggest difference observed at 0.1 mg/kg. Repeated administration of either pegylated hLEP D23L or pegylated hLEP significantly decreased blood glucose levels compared with the control before glucose challenge and after oral glucose tolerance test, but with no difference between the two treatments. The pegylated hLEP D23L mutant seems to be a more potent reagent suitable for in vivo studies than the pegylated nonmutated hLEP. © Copyright 2019 Endocrine Society.